【題目】以直線AB上一點O為端點作射線 OC,使∠BOC=60°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖1,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;
(2)如圖2,將直角三角板DOE繞點O逆時針方向轉(zhuǎn)動到某個位置,若OE恰好平分∠AOC,請說明OD所在射線是∠BOC的平分線;
(3)如圖3,將三角板DOE繞點O逆時針轉(zhuǎn)動到某個位置時,若恰好∠COD= ∠AOE,求∠BOD的度數(shù)?
【答案】(1)30;(2)答案見解析;(3)65°或52.5°.
【解析】試題分析:(1)根據(jù)圖形得出∠COE=∠BOE-∠COB,代入求出即可;
(2)根據(jù)角平分線定義求出∠COE=∠AOE=∠COA,再根據(jù)∠AOE+∠DOB=90°,∠COE+∠COD=90°,可得∠COD=∠DOB,從而問題得證;
(3)設∠COD=x°,則∠AOE=5x°,根據(jù)題意則可得6x=30或5x+90﹣x=120,解方程即可得.
試題解析:(1)∵∠BOE=∠COE+∠COB=90°,
又∵∠COB=60°,
∴∠COE=∠BOE-∠COB=30°,
故答案為:30;
(2)∵OE平分∠AOC,
∴∠COE=∠AOE=∠COA,
∵∠EOD=90°,
∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,
∴∠COD=∠DOB,
∴OD所在射線是∠BOC的平分線;
(3)設∠COD=x°,則∠AOE=5x°,
∵∠DOE=90°,∠BOC=60°,
∴6x=30或5x+90﹣x=120,
∴x=5或7.5,
即∠COD=65°或37.5°,
∴∠BOD=65°或52.5°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點E、F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF長為( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于下列結(jié)論: ①二次函數(shù)y=6x2 , 當x>0時,y隨x的增大而增大.
②關于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1(a、m、b均為常數(shù),a≠0),則方程a(x+m+2)2+b=0的解是x1=﹣4,x2=﹣1.
③設二次函數(shù)y=x2+bx+c,當x≤1時,總有y≥0,當1≤x≤3時,總有y≤0,那么c的取值范圍是c≥3.
其中,正確結(jié)論的個數(shù)是( )
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠AOB=∠COD=90°,∠BOC=34°.
(1)判斷∠BOC與∠AOD之間的數(shù)量關系,并說明理由;
(2)若OE平分∠AOC,求∠EOC的余角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形紙片ABCD的邊長為3,點E、F分別在邊BC、CD上,將AB、AD分別沿AE、AF折疊,點B,D恰好都落在點G處,已知BE=1,則EF的長為( )
A.1.5
B.2.5
C.2.25
D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD是任意四邊形,AC與BD交于點O.試說明:AC+BD> (AB+BC+CD+DA).
解:在△OAB中有OA+OB>AB,
在△OAD中有______________,
在△ODC中有______________,
在△________中有______________,
∴OA+OB+OA+OD+OD+OC+OB+OC>AB+AD+CD+BC,
即________________________.
∴AC+BD> (AB+BC+CD+DA).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國經(jīng)濟的快速發(fā)展讓眾多國家感受到了威脅,隨著釣魚島事件、南海危機、薩德入韓等一系列事件的發(fā)生,國家安全一再受到威脅,所謂“國家興亡,匹夫有責”,某校積極開展國防知識教育,九年級甲、乙兩班分別選5名同學參加“國防知識”比賽,其預賽成績?nèi)鐖D所示:
根據(jù)上圖填寫下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 | ______ | ______ | ||
乙班 | ______ | 10 |
根據(jù)上表數(shù)據(jù),分別從平均數(shù)、中位數(shù)、眾數(shù)、方差的角度分析哪個班的成績較好.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段MN=3cm,在線段MN上取一點P,使PM=PN;延長線段MN到點A,使AN=MN;延長線段NM到點B,使BN=3BM.
(1)根據(jù)題意,畫出圖形;
(2)求線段AB的長;
(3)試說明點P是哪些線段的中點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com