如圖,建立羽毛球比賽場(chǎng)景的平面直角坐標(biāo)系,圖中球網(wǎng)高OD為1.55米,雙方場(chǎng)地的長(zhǎng)OA=OB=6.7(米).羽毛球運(yùn)動(dòng)員在離球網(wǎng)5米的點(diǎn)C處起跳直線扣殺,球從球網(wǎng)上端的點(diǎn)E直線飛過(guò),且DE為0.05米,剛好落在對(duì)方場(chǎng)地點(diǎn)B處.

(1)求羽毛球飛行軌跡所在直線的解析式;
(2)在這次直線扣殺中,羽毛球拍擊球點(diǎn)離地面的高度FC為多少米?(結(jié)果精確到O.1米)
設(shè)羽毛球飛行軌跡所在直線的解析式為:y=kx+b,根據(jù)題意可知:
(1)點(diǎn)E的坐標(biāo)為(O,1.6),點(diǎn)B的坐標(biāo)為(-6.7,0).
將A與B的坐標(biāo)代入y=kx+b中得:
b=1.6
-6.7k+b=0
,
解得:k=
16
67
,b=1.6,
則y=
16
67
x
+1.6.

(2)x=5時(shí),代入解析式y(tǒng)=
16
67
x
+1.6可求得y=2.8.
即FC=2.8.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在直角坐標(biāo)平面內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,4),直線CMx軸(如圖所示),點(diǎn)B與點(diǎn)A關(guān)于原點(diǎn)對(duì)稱,直線y=x+b(b為常數(shù))經(jīng)過(guò)點(diǎn)B,且與直線CM相交點(diǎn)D,連接OD,設(shè)P在x軸的正半軸上,若△POD為等腰三角形,則點(diǎn)P的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在一條筆直地公路上有A、B、C三地,B、C兩地相距150km,甲、乙兩輛汽車(chē)分別從B、C兩地同時(shí)出發(fā),沿公路勻速相向而行,分別駛往C、B兩地.甲、乙兩車(chē)到A地的距離y1、y2與行駛時(shí)間x(h)的函數(shù)圖象如圖2所示.(乙:折線E-M-P)

(1)請(qǐng)?jiān)趫D1中標(biāo)出A地的大致位置;
(2)圖2中,點(diǎn)M的坐標(biāo)是______,該點(diǎn)的實(shí)際意義是______;
(3)求甲車(chē)到A地的距離y1與行駛時(shí)間x(h)的函數(shù)關(guān)系式,直接寫(xiě)出乙車(chē)到A地的距離y2與行駛時(shí)間x(h)的函數(shù)關(guān)系式,并在圖2中補(bǔ)全甲車(chē)的函數(shù)圖象;
(4)A地設(shè)有指揮中心,指揮中心與兩車(chē)配有對(duì)講機(jī),兩部對(duì)講機(jī)在15km之內(nèi)(含15km)時(shí)能夠互相通話,直接寫(xiě)出兩車(chē)可以同時(shí)與指揮中心用對(duì)講機(jī)通話的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)P在直線y=-x+m上,且AP=OP=4.求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖中的圖象(折線ABCDE)描述了一汽車(chē)在某一直道上的行駛過(guò)程中,汽車(chē)離出發(fā)地的距離s(千米)和行駛時(shí)間t(小時(shí))之間的函數(shù)關(guān)系.根據(jù)圖中提供的信息,給出下列說(shuō)法:
①汽車(chē)共行駛了120千米;
②汽車(chē)在行駛途中停留了0.5小時(shí);
③汽車(chē)在整個(gè)行駛過(guò)程中的平均速度為
160
3
千米/時(shí);
④汽車(chē)自出發(fā)后3小時(shí)至4.5小時(shí)之間行駛的速度在逐漸減少.
其中正確的說(shuō)法有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在茶節(jié)期間,某茶商訂購(gòu)了甲種茶葉90噸,乙種茶葉80噸,準(zhǔn)備用A、B兩種型號(hào)的貨車(chē)共20輛運(yùn)往外地.已知A型貨車(chē)每輛運(yùn)費(fèi)為0.4萬(wàn)元,B型貨車(chē)每輛運(yùn)費(fèi)為0.6萬(wàn)元.
(1)設(shè)A型貨車(chē)安排x輛,總運(yùn)費(fèi)為y萬(wàn)元,寫(xiě)出y與x的函數(shù)關(guān)系式;
(2)若一輛A型貨車(chē)可裝甲種茶葉6噸,乙種茶葉2噸;一輛B型貨車(chē)可裝甲種茶葉3噸,乙種茶葉7噸.按此要求安排A、B兩種型號(hào)貨車(chē)一次性運(yùn)完這批茶葉,共有哪幾種運(yùn)輸方案?
(3)說(shuō)明哪種方案運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,直線y=-x+1與x軸、y軸分別相交于點(diǎn)C、D,一個(gè)含45°角的直角三角板的銳角頂點(diǎn)A在線段CD上滑動(dòng),滑動(dòng)過(guò)程中三角板的斜邊始終經(jīng)過(guò)坐標(biāo)原點(diǎn),∠A的另一邊與軸的正半軸相交于點(diǎn)B.
(1)試探索△AOB能否構(gòu)成以AO、AB為腰的等腰三角形?若能,請(qǐng)求出點(diǎn)B的坐標(biāo);若不能,說(shuō)說(shuō)明理由;
(2)若將題中“直線y=-x+1”、“∠A的另一邊與軸的正半軸相交于點(diǎn)B”分別改為“直線y=-x+t(t>0)”、“∠A的另一邊與軸的負(fù)半軸相交于點(diǎn)B”(如圖2),其他條件不變,試探索△AOB能否為等腰三角形(只考慮點(diǎn)A在線段CD的延長(zhǎng)線上且不包括點(diǎn)D時(shí)的情況)?若能,請(qǐng)求出點(diǎn)B的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如果y+3與x+2成正比例,且x=3時(shí),y=7.
(1)寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(2)畫(huà)出該函數(shù)圖象;并觀察當(dāng)x取什么值時(shí),y<0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知一次函數(shù)y=(m+2)x+1的圖象經(jīng)過(guò)點(diǎn)(2,0),則m的值是( 。
A.
5
2
B.-
5
2
C.-
2
5
D.
2
5

查看答案和解析>>

同步練習(xí)冊(cè)答案