B
分析:根據折疊的性質可知,折疊前后的兩個三角形全等,則∠D=∠A,∠MCD=∠MCA,再由直角三角形斜邊中線的性質可得出∠MCD=∠D,從而求得∠A的度數.
解答:在直角△ABC中,CM=AM=MB,(直角三角形的斜邊中線等于斜邊一半),
∴∠A=∠ACM,
由折疊的性質可得:∠A=∠D,∠MCD=∠MCA,AM=DM,
∴MC=MD,∠A=∠ACM=∠MCE,
∵AB⊥CD,
∴∠CMB=∠DMB,∠CEB=∠MED=90°,
∵∠B+∠A=90°,∠B+∠ECB=90°,
∴∠A=∠ECB,
∴∠A=∠ACM=∠MCE=∠ECB,
∴∠A=
∠ACB=30°,
故選B.
點評:本題考查圖形的折疊變化及三角形的內角和定理.關鍵是要理解折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,只是位置變化.