【題目】如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點(且點P不與點B、C重合),PE⊥AB于E,PF⊥AC于F,M為EF中點.設AM的長為x,則x的取值范圍是( )
A. 4≥x>2.4 B. 4≥x≥2.4 C. 4>x>2.4 D. 4>x≥2.4
【答案】D
【解析】
根據(jù)勾股定理的逆定理求出△ABC是直角三角形,得出四邊形AEPF是矩形,求出AM=EF=AP,求出AP≥4.8,即可得出答案.
解:連接AP.
∵AB=6,AC=8,BC=10,
∴AB2+AC2=36+64=100,BC2=100,
∴AB2+AC2=BC2,
∴∠BAC=90°,
∵PE⊥AB,PF⊥AC,
∴∠AEP=∠AFP=∠BAC=90°,
∴四邊形AEPF是矩形,
∴AP=EF,
∵∠BAC=90°,M為EF中點,
∴AM=EF=AP,
當AP⊥BC時,AP值最小,
此時S△BAC=×6×8=×10×AP,
AP=4.8,
即AP的范圍是AP≥4.8,
∴2AM≥4.8,
∴AM的范圍是AM≥2.4(即x≥2.4).
∵P為邊BC上一動點,當P和C重合時,AM=4,
∵P和B、C不重合,
∴x<4,
綜上所述,x的取值范圍是:2.4≤x<4.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】有理數(shù)x,y在數(shù)軸上對應點如圖所示:
(1)在數(shù)軸上表示﹣x,|y|;
(2)試把x,y,0,﹣x,|y|這五個數(shù)從小到大用“<”號連接,
(3)化簡:|x+y|﹣|y﹣x|+|y|.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形網(wǎng)格中的交點,我們稱之為格點.如圖所示的網(wǎng)格圖中,每個小正方形的邊長都為.現(xiàn)有格點,那么,在網(wǎng)格圖中找出格點,使以和格點為頂點的三角形的面積為.這樣的點可找到的個數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網(wǎng)店3月份經(jīng)營一種熱銷商品,每件成本20元,發(fā)現(xiàn)三周內(nèi)售價在持續(xù)提升,銷售單價P(元/件)與時間t(天)之間的函數(shù)關系為P=30+ t(其中1≤t≤21,t為整數(shù)),且其日銷售量y(件)與時間t(天)的關系如下表
時間t(天) | 1 | 5 | 9 | 13 | 17 | 21 |
日銷售量y(件) | 118 | 110 | 102 | 94 | 86 | 78 |
(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關系,請直接寫出y(件)與時間t(天)函數(shù)關系式;
(2)在這三周的銷售中,第幾天的銷售利潤最大?最大日銷售利潤為多少?
(3)在實際銷售的21天中,該網(wǎng)店每銷售一件商品就捐贈a元利潤(a<8)給“精準扶貧”的對象,通過銷售記錄發(fā)現(xiàn),這21天中,每天扣除捐贈后的日銷售利潤隨時間t(天)的增大而增大,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(﹣3,3),B(﹣1,1.5),將線段AB向右平移d個單位長度后,點A、B恰好同時落在反比例函數(shù)y= (x>0)的圖象上,則d等于( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D,E,F(xiàn)分別是BC,AD,CE邊上的中點,且S△ABC=16 cm2,則S△BEF=_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】與經(jīng)典同行,與好書相伴,近期,我校開展了“圖書漂流活動”初一年級小主人委員會的同學自愿整理圖書,若兩個男生和一個女生共整理160本,一個男生和兩個女生共整理170本
(1)男生和女生每人各整理多少本圖書?
(2)如果小主人委員會有12男生和8個女生,它們恰好整理完圖書,請問這些圖書一共有多少本?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在6×6的正方形網(wǎng)格中,每個小正方形的邊長為1,點A、B、C、D、E、F、M、N、P均為格點(格點是指每個小正方形的頂點).
(1)利用圖①中的網(wǎng)格,過P點畫直線MN的平行線和垂線.
(2)把圖②網(wǎng)格中的三條線段AB、CD、EF通過平移使之首尾順次相接組成一個三角形(在圖②中畫出三角形).
(3)第(2)小題中線段AB、CD、EF首尾順次相接組成一個三角形的面積是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在平面直角坐標系中,的面積為8,,,點的坐標是.
(1)求三個頂點、、的坐標;
(2)若點坐標為,連接,,求的面積;
(3)是否存在點,使的面積等于的面積?如果存在,請求出點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com