(2009•樂山)一個(gè)不透明的口袋里裝有紅、白、黃三種顏色的乒乓球(除顏色外其余都相同),其中白球有2個(gè),黃球有1個(gè).若從中任意摸出一個(gè)球,這個(gè)球是白球的概率為
(1)求口袋中紅球的個(gè)數(shù);
(2)把口袋中的球攪勻后摸出一個(gè)球,放回?cái)噭蛟倜龅诙䝼(gè)球,求摸到的兩個(gè)球是一紅一白的概率.(請結(jié)合樹狀圖或列表加以解答)
【答案】分析:(1)根據(jù)概率的計(jì)算公式,可得關(guān)系式有=,解可得答案;
(2)用列表法列舉出所有情況,看所求的情況與總情況的比值即可得答案.
解答:解:(1)設(shè)口袋中紅球有x個(gè),
則根據(jù)概率的計(jì)算公式,有=
解可得,x=2;
故口袋中紅球有2個(gè).

(2)根據(jù)題意,有
紅1、白1紅1、白2紅1、紅1紅1、紅2紅1、黃
白1、白1白1、白2白1、紅1白1、紅2白1、黃
白2、白1白2、白2白2、紅1白2、紅2白2、黃
紅2、白1紅2、白2紅2、紅1紅2、紅2紅2、黃
黃、白1黃、白2黃、紅1黃、紅2黃、黃
分析可得,共25種情況,其中有8種情況摸到的兩個(gè)球是一紅一白;
故其概率為
點(diǎn)評:列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩部以上完成的事件.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(08)(解析版) 題型:選擇題

(2009•樂山)為了解初三學(xué)生的體育鍛煉時(shí)間,小華調(diào)查了某班45名同學(xué)一周參加體育鍛煉的情況,并把它繪制成折線統(tǒng)計(jì)圖(如圖所示).那么關(guān)于該班45名同學(xué)一周參加體育鍛煉時(shí)間的說法錯(cuò)誤的是( )

A.眾數(shù)是9
B.中位數(shù)是9
C.平均數(shù)是9
D.鍛煉時(shí)間不低于9小時(shí)的有14人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《概率》(06)(解析版) 題型:解答題

(2009•樂山)一個(gè)不透明的口袋里裝有紅、白、黃三種顏色的乒乓球(除顏色外其余都相同),其中白球有2個(gè),黃球有1個(gè).若從中任意摸出一個(gè)球,這個(gè)球是白球的概率為
(1)求口袋中紅球的個(gè)數(shù);
(2)把口袋中的球攪勻后摸出一個(gè)球,放回?cái)噭蛟倜龅诙䝼(gè)球,求摸到的兩個(gè)球是一紅一白的概率.(請結(jié)合樹狀圖或列表加以解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《數(shù)據(jù)分析》(01)(解析版) 題型:選擇題

(2009•樂山)為了解初三學(xué)生的體育鍛煉時(shí)間,小華調(diào)查了某班45名同學(xué)一周參加體育鍛煉的情況,并把它繪制成折線統(tǒng)計(jì)圖(如圖所示).那么關(guān)于該班45名同學(xué)一周參加體育鍛煉時(shí)間的說法錯(cuò)誤的是( )

A.眾數(shù)是9
B.中位數(shù)是9
C.平均數(shù)是9
D.鍛煉時(shí)間不低于9小時(shí)的有14人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《數(shù)據(jù)收集與處理》(01)(解析版) 題型:選擇題

(2009•樂山)為了解初三學(xué)生的體育鍛煉時(shí)間,小華調(diào)查了某班45名同學(xué)一周參加體育鍛煉的情況,并把它繪制成折線統(tǒng)計(jì)圖(如圖所示).那么關(guān)于該班45名同學(xué)一周參加體育鍛煉時(shí)間的說法錯(cuò)誤的是( )

A.眾數(shù)是9
B.中位數(shù)是9
C.平均數(shù)是9
D.鍛煉時(shí)間不低于9小時(shí)的有14人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(08)(解析版) 題型:解答題

(2009•樂山)如圖,某學(xué)習(xí)小組為了測量河對岸塔AB的高度,在塔底部點(diǎn)B的正對岸點(diǎn)C處,測得塔頂點(diǎn)A的仰角為∠ACB=60°
(1)若河寬BC是36米,求塔AB的高度;(結(jié)果精確到0.1米)
(2)若河寬BC的長度不易測量,如何測量塔AB的高度呢?小強(qiáng)思考了一種方法:從點(diǎn)C出發(fā),沿河岸前行a米至點(diǎn)D處,若在點(diǎn)D處測出∠BDC的度數(shù)θ,這樣就可以求出塔AB的高度了.小強(qiáng)的方法可行嗎?若可行,請用a和θ表示塔AB的高度;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案