【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于第一、三象限內(nèi)的兩點(diǎn),與軸交于點(diǎn)

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)在軸上找一點(diǎn)使最大,求的最大值及點(diǎn)的坐標(biāo).

【答案】1)反比例函數(shù)解析式:y2;一次函數(shù)的解析式:y1=x+22的最大值,點(diǎn)的坐標(biāo)(0,2).

【解析】

1)把A3,5)代入y2 (m≠0),可求出反比例函數(shù)的關(guān)系式,求出點(diǎn)B坐標(biāo),進(jìn)而確定一次函數(shù)關(guān)系式;

2)求出一次函數(shù)與y軸的交點(diǎn)坐標(biāo),可得此時(shí)PB-PC最大,為BC,根據(jù)勾股定理求出結(jié)果即可.

解:解:(1)把A3,5)代入y2 (m≠0),可得m=3×5=15,
∴反比例函數(shù)的解析式為y2;
把點(diǎn)Ba-3)代入y2,可得a=-5,
B-5,-3).
A35),B-5-3)代入y1=x+b,可得

,
解得

,
∴一次函數(shù)的解析式為y1=x+2;
2)一次函數(shù)的解析式為y1=x+2,令x=0,則y=2,
∴一次函數(shù)與y軸的交點(diǎn)為P0,2),
此時(shí),PB-PC=BC最大,P即為所求,
y=0,則x=-2
C-2,0),
BC

綜上所述,的最大值,點(diǎn)的坐標(biāo)(02).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年全國(guó)兩會(huì)于35日在人民大會(huì)堂開(kāi)幕,某社區(qū)為了解居民對(duì)此次兩會(huì)的關(guān)注程度,在全社區(qū)范圍內(nèi)隨機(jī)抽取部分居民進(jìn)行問(wèn)卷調(diào)查,根據(jù)調(diào)查結(jié)果,把居民對(duì)兩會(huì)的關(guān)注程度分成淡薄一般、較強(qiáng)、很強(qiáng)四個(gè)層次,并繪制成如下不完整的統(tǒng)計(jì)圖:

請(qǐng)結(jié)合圖表中的信息,解答下列問(wèn)題:

(1)此次調(diào)查一共隨機(jī)抽取了_____名居民;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)扇形統(tǒng)計(jì)圖中,很強(qiáng)所對(duì)應(yīng)扇形圓心角的度數(shù)為_____;

(4)若該社區(qū)有1500人,則可以估計(jì)該社區(qū)居民對(duì)兩會(huì)的關(guān)注程度為淡薄層次的約有 _____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線(xiàn)段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線(xiàn)段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;點(diǎn)OO′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+4;⑤SAOC+SAOB=6+,其中正確的結(jié)論是(  )

A. ①②③⑤ B. ①②③④ C. ①②④⑤ D. ①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰△ABC中,ABAC,以AB為直徑的⊙OBC相交于點(diǎn)DBD2AD,過(guò)點(diǎn)DDEACBA延長(zhǎng)線(xiàn)于點(diǎn)E,垂足為點(diǎn)F

1)求tanADF的值;

2)證明:DE⊙O的切線(xiàn);

3)若⊙O的半徑R5,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)軸交于點(diǎn),與軸交于點(diǎn),拋物線(xiàn)經(jīng)過(guò)點(diǎn)和點(diǎn),與軸交于另一點(diǎn)

1)求拋物線(xiàn)表達(dá)式;

2)在第二象限的拋物線(xiàn)上有一點(diǎn),且點(diǎn)到線(xiàn)段的距離為,求點(diǎn)的坐標(biāo);

3)矩形的邊軸的正半軸,在第一象限,,將矩形沿軸負(fù)方向平移,直線(xiàn)、分別交拋物線(xiàn)于.問(wèn):是否存在實(shí)數(shù),使得以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn) 軸、軸分別交于點(diǎn)B、C,經(jīng)過(guò)BC兩點(diǎn)的拋物線(xiàn)軸的另一個(gè)交點(diǎn)為A

(1)求該拋物線(xiàn)的解析式;

2若點(diǎn)P在直線(xiàn)下方的拋物線(xiàn)上,過(guò)點(diǎn)PPD軸交于點(diǎn)D,PE軸交于點(diǎn)E

PD+PE的最大值;

(3)設(shè)F為直線(xiàn)上的點(diǎn),以AB、PF為頂點(diǎn)的四邊形能否構(gòu)成平行四邊形?若能,求出點(diǎn)F的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大樓AN上懸掛一條幅AB,小穎在坡面D處測(cè)得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向大樓方向繼續(xù)行走10米來(lái)到C處,測(cè)得條幅的底部B的仰角為45°,此時(shí)小穎距大樓底端N20米.已知坡面DE20米,山坡的坡度i(即tanDEM),且D、ME、CN、BA在同一平面內(nèi),M、E、C、N在同一條直線(xiàn)上,求條幅AB的長(zhǎng)度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線(xiàn)AC,BD交于點(diǎn)O,AEBCCB延長(zhǎng)線(xiàn)于E,CFAEAD延長(zhǎng)線(xiàn)于點(diǎn)F

(1)求證:四邊形AECF是矩形;

(2)連接OE,若AE=8AD=10,求OE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案