如圖,將邊長(zhǎng)為4的等邊三角形AOB放置于平面直角坐標(biāo)系xoy中,F(xiàn)是AB邊上的動(dòng)點(diǎn)(不與端點(diǎn)A、B重合),過(guò)點(diǎn)F的反比例函數(shù)(k>0,x>0)與OA邊交于點(diǎn)E,過(guò)點(diǎn)F作FC⊥x軸于點(diǎn)C,連結(jié)EF、OF.
(1)若S△OCF=,求反比例函數(shù)的解析式;
(2)在(1)的條件下,試判斷以點(diǎn)E為圓心,EA長(zhǎng)為半徑的圓與y軸的位置關(guān)系,并說(shuō)明理由;
(3)AB邊上是否存在點(diǎn)F,使得EF⊥AE?若存在,請(qǐng)求出BF:FA的值;若不存在,請(qǐng)說(shuō)明理由.
解:(1)設(shè)F(x,y),(x>0,y>0),則OC=x,CF=y,
∴S△OCF=xy=,即xy=2!鄈=2。
∴反比例函數(shù)解析式為(x>0)。
(2)該圓與y軸相離,理由如下:
過(guò)點(diǎn)E作EH⊥x軸,垂足為H,過(guò)點(diǎn)E作EG⊥y軸,垂足為G,
在△AOB中,OA=AB=4,∠AOB=∠ABO=∠A=60°,
設(shè)OH=m,則,
∴EH=m,OE=2m。∴E坐標(biāo)為(m,m),
∵E在反比例圖象上,∴。
∴m1=,m2=-(舍去)。
∴OE=2,EA=4﹣2,EG=。
∵4﹣2<,∴EA<EG。
∴以E為圓心,EA垂為半徑的圓與y軸相離。
(3)存在。
假設(shè)存在點(diǎn)F,使AE⊥FE,
過(guò)E點(diǎn)作EH⊥OB于點(diǎn)H,設(shè)BF=x.
∵△AOB是等邊三角形,
∴AB=OA=OB=4,∠AOB=∠ABO=∠A=60°。
∴BC=FB•cos∠FBC=x,F(xiàn)C=FB•sin∠FBC=x,
∴AF=4﹣x,OC=OB﹣BC=4﹣x。
∵AE⊥FE,∴AE=AF•cosA=2﹣x。
∴OE=OA﹣AE=x+2。
∴OH=OE•cos∠AOB=x+1,EH=OE•sin∠AOB=x+。
∴E(x+1, x+),F(xiàn)(4﹣x,x)。
∵E、F都在雙曲線的圖象上,
∴(x+1)(x+)=(4﹣x)•x。解得:x1=4,x2=。
當(dāng)BF=4時(shí),AF=0,BF:AF不存在,舍去。
當(dāng)BF=時(shí),AF=,BF:AF=1:4
【解析】
試題分析:(1)設(shè)F(x,y),得到OC=x與CF=y,表示出三角形OCF的面積,求出xy的值,即為k的值,進(jìn)而確定出反比例解析式。
(2)過(guò)E作EH垂直于x軸,EG垂直于y軸,設(shè)OH為m,利用等邊三角形的性質(zhì)及銳角三角函數(shù)定義表示出EH與OE,進(jìn)而表示出E的坐標(biāo),代入反比例解析式中求出m的值,確定出EG,OE,EH的長(zhǎng),根據(jù)EA與EG的大小關(guān)系即可對(duì)于圓E與y軸的位置關(guān)系作出判斷。
(3)過(guò)E作EH垂直于x軸,設(shè)FB=x,利用等邊三角形的性質(zhì)及銳角三角函數(shù)定義表示出FC與BC,進(jìn)而表示出AF與OC,表示出AE與OE的長(zhǎng),得出OE與EH的長(zhǎng),表示出E與F坐標(biāo),根據(jù)E與F都在反比例圖象上,得到橫縱坐標(biāo)乘積相等列出方程,求出方程的解得到x的值,即可求出BF與FA的比值!
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
BA |
A、
| ||
B、2
| ||
C、3
| ||
D、4
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
4 |
3 |
4 |
3 |
3+
| ||
2 |
3+
| ||
2 |
2 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com