(本題7分)如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹(shù)DE的高度.他們?cè)谶@棵樹(shù)正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹(shù)頂端D的仰角為30°,朝著這棵樹(shù)的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹(shù)頂端D的仰角為60°.已知A點(diǎn)的高度AB為2米,臺(tái)階AC的坡度為 (即AB:BC=),且B、C、E三點(diǎn)在同一條盲線上。請(qǐng)根據(jù)以上殺件求出樹(shù)DE的高度(測(cè)傾器的高度忽略不計(jì)).

 

解:樹(shù)DE的高度為6米。

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題11分)如圖所示,矩形中,厘米,厘米().動(dòng)點(diǎn) 同時(shí)從點(diǎn)出發(fā),分別沿運(yùn)動(dòng),速度是厘米/秒.過(guò)作直線垂直于,分別交.當(dāng)點(diǎn)到達(dá)終點(diǎn)時(shí),點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.

(1)若厘米,秒,求PM的長(zhǎng)度;

(2)若厘米,求出某個(gè)時(shí)間,使⊿PNB∽⊿PAD,并求出它們的相似比;

(3)若在運(yùn)動(dòng)過(guò)程中,存在某時(shí)刻使梯形PMBN與梯形PQDA的面積相等,求的取值范圍;

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題8分)如圖,是某汽車(chē)行駛的路程S(km)與時(shí)間t(min)的函數(shù)關(guān)系圖.觀察圖中所提供的信息,解答下列問(wèn)題:

  (1)汽車(chē)在前9min內(nèi)的平均速度是        ;

  (2)汽車(chē)在中途停了多長(zhǎng)時(shí)間?

  (3)當(dāng)16≤t≤30時(shí),求S與t的函數(shù)關(guān)系式.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(11·大連)(本題10分)如圖10,某容器由A、B、C三個(gè)長(zhǎng)方體組成,其中
A、B、C的底面積分別為25cm2、10cm2、5cm2,C的容積是容器容積的(容器各面的厚
度忽略不計(jì)).現(xiàn)以速度v(單位:cm3/s)均勻地向容器注水,直至注滿(mǎn)為止.圖11是注水
全過(guò)程中容器的水面高度h(單位:cm)與注水時(shí)間t(單位:s)的函數(shù)圖象.
⑴在注水過(guò)程中,注滿(mǎn)A所用時(shí)間為_(kāi)_____s,再注滿(mǎn)B又用了_____s;
⑵求A的高度hA及注水的速度v;
⑶求注滿(mǎn)容器所需時(shí)間及容器的高度.
        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(11·大連)(本題12分)如圖7,某建筑物BC上有一旗桿AB,小明在與BC
相距12m的F處,由E點(diǎn)觀測(cè)到旗桿頂部A的仰角為52°、底部B的仰角為45°,小明的
觀測(cè)點(diǎn)與地面的距離EF為1.6m.
⑴求建筑物BC的高度;
⑵求旗桿AB的高度.
(結(jié)果精確到0.1m.參考數(shù)據(jù):≈1.41,sin52°≈0.79,tan52°≈1.28)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(湖南永州卷)數(shù)學(xué) 題型:解答題

(11·大連)(本題10分)如圖10,某容器由A、B、C三個(gè)長(zhǎng)方體組成,其中

A、B、C的底面積分別為25cm2、10cm2、5cm2,C的容積是容器容積的(容器各面的厚

度忽略不計(jì)).現(xiàn)以速度v(單位:cm3/s)均勻地向容器注水,直至注滿(mǎn)為止.圖11是注水

全過(guò)程中容器的水面高度h(單位:cm)與注水時(shí)間t(單位:s)的函數(shù)圖象.

⑴在注水過(guò)程中,注滿(mǎn)A所用時(shí)間為_(kāi)_____s,再注滿(mǎn)B又用了_____s;

⑵求A的高度hA及注水的速度v;

⑶求注滿(mǎn)容器所需時(shí)間及容器的高度.

        

 

查看答案和解析>>

同步練習(xí)冊(cè)答案