10、如圖,△ABC的高AD、BE相交于點(diǎn)O,則∠C與∠BOD的關(guān)系是( 。
分析:根據(jù)條件,∠C與∠OAE互余,∠OAE與∠AOE互余,則∠C=∠AOE,從而得出∠C與∠BOD相等.
解答:解:∵△ABC的高為AD、BE,
∴∠C+∠OAE=90°,∠OAE+∠AOE=90°,∴∠C=∠AOE,
∵∠AOE=∠BOD(對(duì)頂角相等),∴∠C與∠BOD相等.故選A.
點(diǎn)評(píng):本題利用垂直的定義,對(duì)頂角相等和同角的余角相等進(jìn)行推理,要注意領(lǐng)會(huì)由垂直得直角這一要點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,△ABC的高AD、BE、CF相交于點(diǎn)I,△BIC的BI邊上的高是
CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,△ABC的高BD、CE相交于點(diǎn)O,且OB=OC,AB與AC相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC的高CF、BG相交于點(diǎn)H,分別延長(zhǎng)CF、BG與△ABC的外接圓交于D、E兩點(diǎn),則下列結(jié)論:①AD=AE;②AH=AE;③若DE為△ABC的外接圓的直徑,則BC=AE.其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC的高AD=4,BC=8,四邊形MNPQ是△ABC中任意一個(gè)內(nèi)接矩形
(1)設(shè)MN=x,MQ=y,求y關(guān)于x的函數(shù)解析式;
(2)設(shè)MN=x,矩形MNPQ的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并求出當(dāng)MN為多大時(shí),矩形MNPQ面積y有最大值,最大值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案