已知二次函數(shù)的圖象經(jīng)過點(4,3),(3,0).

(1)求b、c的值;
(2)求出該二次函數(shù)圖象的頂點坐標(biāo)和對稱軸,并在所給坐標(biāo)系中畫出該函數(shù)的圖象;
(3)該函數(shù)的圖像經(jīng)過怎樣的平移得到的圖像?

(1)-4,3;(2)(2,-1),x=2;(3)向左平移2個單位,再向上平移1個單位.

解析試題分析:(1)把(4,3),(3,0)代入得到關(guān)于b、c的方程組,然后解方程組即可;
(2)把二次函數(shù)的解析式配成頂點式,然后確定頂點坐標(biāo)和對稱軸,再畫出函數(shù)圖象;
(3)把頂點(2,-1)移到原點即可.
試題解析:(1)將(4,3),(3,0)代入,得,
解得:.
(2)∵二次函數(shù),
∴頂點坐標(biāo)為(2,-1),對稱軸是直線x=2.
畫圖如下:

(3)將該函數(shù)的圖像向左平移2個單位,再向上平移1個單位得到的圖像.
考點:1.待定系數(shù)法求二次函數(shù)解析式;2.二次函數(shù)圖象與幾何變換.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知直線y=x+6交x軸于點A,交y軸于點C,經(jīng)過A和原點O的拋物線y=ax2+bx(a<0)的頂點B在直線AC上.

(1)求拋物線的函數(shù)關(guān)系式;
(2)以B點為圓心,以AB為半徑作⊙B,將⊙B沿x軸翻折得到⊙D,試判斷直線AC與⊙D的位置關(guān)系,并說明理由;
(3)若E為⊙B優(yōu)弧上一動點,連結(jié)AE、OE,問在拋物線上是否存在一點M,使∠MOA︰∠AEO=2︰3,若存在,試求出點M的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某商店將進(jìn)價為每件80元的某種商品按每件100元出售,每天可售出100件.經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品每件每降低1元,其銷售量就可增加10件.
(1)設(shè)每件商品降低售價元,則降價后每件利潤        元,每天可售出        件(用含的代數(shù)式表示);
(2)如果商店為了每天獲得利潤2160元,那么每件商品應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

拋物線經(jīng)過點A(4,0),B(2,2),連結(jié)OB,AB.

(1)求、的值;
(2)求證:△OAB是等腰直角三角形;
(3)將△OAB繞點O按順時針方向旋轉(zhuǎn)l35°得到△OA′B′,寫出A′B′的中點P的出標(biāo).試判斷點P是否在此拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知拋物線軸于A(2,0),B(6,0)兩點,交軸于點C(0,).

(1)求此拋物線的解析式;
(2)若此拋物線的對稱軸與直線交于點D,作⊙D與x軸相切,⊙D交軸于點E、F兩點,求劣弧EF所對圓心角的度數(shù);
(3)P為此拋物線在第二象限圖像上的一點,PG垂直于軸,垂足為點G,試確定P點的位置,使得△PGA的面積被直線AC分為1︰2兩部分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(4,﹣),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).
(1)求拋物線的解析式及A,B兩點的坐標(biāo);
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,請說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

拋物線過點(2,-2)和(-1,10),與x軸交于A、B兩點,與y軸交于C點.
(1)求拋物線的解析式.
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)y=ax2+bx-3的圖象經(jīng)過點A(2,-3),B(-1,0). 求二次函數(shù)的解析式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過(-1,0),(0,-3),(2,-3)三點,求這條拋物線的解析式,并指出對稱軸和頂點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案