某商場將進(jìn)貨價為每個30元的臺燈以每個40元出售,平均每月能售出600個.經(jīng)過調(diào)查表明:如果每個臺燈的售價每上漲1元,那么其銷售數(shù)量就將減少10個.為了實現(xiàn)平均每月10000元的銷售利潤,問每個臺燈的售價應(yīng)定為多少元?

解:設(shè)每個臺燈應(yīng)上漲x元
y=[(40+x)-30](600-10x)
化簡:y=(x+10)(600-10x),
=600x-10x2+6000-100x,
=500x-10x2+6000,
=10(600+50x-x2
=-10(x2-50x+625-1225)
=-10(x-25)2+12250
當(dāng)y=10000時,-10(x-25)2+12250=10000
解得x1=40,x2=10,
故每個臺燈的售價應(yīng)定為40+40=80元或40+10=50元.
分析:每個臺燈獲利(40+x)-30,共售出600-10x,則y=[(40+x)-30](600-10x),據(jù)此即可解答.
點評:本題考查的是二次函數(shù)的實際應(yīng)用.難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、某商場將進(jìn)貨價為每個30元的臺燈以每個40元出售,平均每月能售出600個.經(jīng)過調(diào)查表明:如果每個臺燈的售價每上漲1元,那么其銷售數(shù)量就將減少10個.為了實現(xiàn)平均每月10000元的銷售利潤,問每個臺燈的售價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(23):2.6 何時獲得最大利潤(解析版) 題型:解答題

某商場將進(jìn)貨價為每個30元的臺燈以每個40元出售,平均每月能售出600個.經(jīng)過調(diào)查表明:如果每個臺燈的售價每上漲1元,那么其銷售數(shù)量就將減少10個.為了實現(xiàn)平均每月10000元的銷售利潤,問每個臺燈的售價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(26):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商場將進(jìn)貨價為每個30元的臺燈以每個40元出售,平均每月能售出600個.經(jīng)過調(diào)查表明:如果每個臺燈的售價每上漲1元,那么其銷售數(shù)量就將減少10個.為了實現(xiàn)平均每月10000元的銷售利潤,問每個臺燈的售價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第6章《二次函數(shù)》中考題集(27):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商場將進(jìn)貨價為每個30元的臺燈以每個40元出售,平均每月能售出600個.經(jīng)過調(diào)查表明:如果每個臺燈的售價每上漲1元,那么其銷售數(shù)量就將減少10個.為了實現(xiàn)平均每月10000元的銷售利潤,問每個臺燈的售價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第26章《二次函數(shù)》中考題集(25):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

某商場將進(jìn)貨價為每個30元的臺燈以每個40元出售,平均每月能售出600個.經(jīng)過調(diào)查表明:如果每個臺燈的售價每上漲1元,那么其銷售數(shù)量就將減少10個.為了實現(xiàn)平均每月10000元的銷售利潤,問每個臺燈的售價應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊答案