已知一次函數(shù)y1 = 2x和二次函數(shù)y2 = x2 + 1。
【小題1】求證:函數(shù)y1、y2的圖像都經(jīng)過同一個定點;
【小題2】求證:在實數(shù)范圍內(nèi),對于任意同一個x的值,這兩個函數(shù)所對應(yīng)的函數(shù)值y1 ≤ y2總成立;
【小題3】是否存在拋物線y3 = ax2 + bx + c,其圖象經(jīng)過點(5,2),且在實數(shù)范圍內(nèi),對于同一個x的值,這三個函數(shù)所對應(yīng)的函數(shù)值y1 ≤ y3 ≤ y2總成立?若存在,求出y3的解析式;若不存在,說明理由。

【小題1】如果經(jīng)過同一點,那么y1=y2,即2x= x2 + 1
x=1
把x=1代入到一次函數(shù)中得  y=2
∴函數(shù)y1、y2的圖像都經(jīng)過同一個定點(1,2)(3分)
【小題2】∵y2- y1= x2 + 1-2x= (x-1)2≥0
∴在實數(shù)范圍內(nèi),對于任意同一個x的值,這兩個函數(shù)所對應(yīng)的函數(shù)值y1 ≤ y2總成立;(3分)
【小題3】存在
∵三個函數(shù)所對應(yīng)的函數(shù)值y1 ≤ y3 ≤ y2總成立
∴拋物線y3 = ax2 + bx + c也必經(jīng)(1,2)
把(1,2)和(-5,2)代入拋物線y3 = ax2 + bx + c中解得:
(4分)解析:
(1)利用y1=y2,求出定點的坐標(biāo)從而得證;
(2)求出y2- y1關(guān)于x的方程進行變形討論出結(jié)論;
(3)要符合y1 ≤ y3 ≤ y2條件,就必然得出拋物線y3 = ax2 + bx + c也必經(jīng)(1,2),然后把(1,2)和(-5,2)代入就得出解析式。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、已知一次函數(shù)y1=2x和二次函數(shù)y2=2x2-2x+2;
(1)證明對任意實數(shù)x,都有y1≤y2
(2)求二次函數(shù)y3,其圖象過點(-1,2),且對任意實數(shù)x,都有y1≤y3≤y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)y1=ax+b的圖象與反比例函數(shù)y2=
kx
的圖象相交于A、B兩點,坐標(biāo)分別為(-精英家教網(wǎng)2,4)、(4,-2).
(1)求兩個函數(shù)的解析式;
(2)結(jié)合圖象寫出y1<y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•德陽)已知一次函數(shù)y1=x+m的圖象與反比例函數(shù)y2=
6x
的圖象交于A、B兩點.已知當(dāng)x>1時,y1>y2;當(dāng)0<x<1時,y1<y2
(1)求一次函數(shù)的解析式;
(2)已知雙曲線在第一象限上有一點C到y(tǒng)軸的距離為3,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)y1=ax+b的圖象與反比例函數(shù)y2=
kx
的圖象相交于A、B兩點,坐標(biāo)分別為(-2,4)、(4,-2).
(1)求兩個函數(shù)的解析式;
(2)結(jié)合圖象寫出y1<y2時,x的取值范圍;
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知一次函數(shù)y1=kx+b的圖象經(jīng)過A(1,2)、B(-1,0)兩點,y2=mx+n的圖象經(jīng)過A、C(3,0)兩點,則不等式組0<kx+b<mx+n的解集是( 。

查看答案和解析>>

同步練習(xí)冊答案