【題目】如圖所示△ABC,AB=AC,AD⊥BC,點(diǎn)E、F分別是AB、AC的中點(diǎn).

(1)求證:四邊形AEDF是菱形;

(2)若四邊形AEDF的周長(zhǎng)為12,兩條對(duì)角線的和等于7,四邊形AEDF的面積記為S1,三 角形ABC的面積記為S2,S1與S2有何數(shù)量關(guān)系_____.(直接填答案)

【答案】(1)詳見解析;(2)2S1=S2.

【解析】

(1)根據(jù)直角三角形斜邊上中線的性質(zhì),得出DE=AB=AE,DF=AC=AF,再根據(jù)AB=AC,點(diǎn)E、F分別是AB、AC的中點(diǎn),即可得到AE=AF=DE=DF,進(jìn)而判定四邊形AEDF是菱形;(2)利用三角形的中線把三角形分成面積相等的兩部分即可解答.

(1)證明:∵AD⊥BC,點(diǎn)E、F分別是AB、AC的中點(diǎn),

∴Rt△ABD中,DE=AB=AE,

Rt△ACD中,DF=AC=AF,

又∵AB=AC,點(diǎn)E、F分別是AB、AC的中點(diǎn),

∴AE=AF,

∴AE=AF=DE=DF,

∴四邊形AEDF是菱形;

(2)2S1=S2

點(diǎn)E、F分別是AB、AC的中點(diǎn),

,

,

2S1=S2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長(zhǎng)相等的下列兩種正多邊形的組合,不能作平面鑲嵌的是( 。

A.正方形與正三角形B.正五邊形與正三角形

C.正六邊形與正三角形D.正八邊形與正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊ABCABBC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cms。

⑴連接AQ、CP交于點(diǎn)M,在點(diǎn)P、Q運(yùn)動(dòng)的過程中,∠CMQ的大小變化嗎?若變化,則說明理由,若不變,請(qǐng)直接寫出它的度數(shù);

⑵點(diǎn)P、Q在運(yùn)動(dòng)過程中,設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)t為何值時(shí),PBQ為直角三角形?

⑶如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線ABBC上運(yùn)動(dòng),直線AQCP交點(diǎn)為M,則∠CMQ的大小變化嗎?則說明理由;若不變,請(qǐng)求出它的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形中,,,點(diǎn)上一點(diǎn),將沿折疊,使點(diǎn)落在點(diǎn)處,連接,當(dāng)為直角三角形時(shí),的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或列方程組解應(yīng)用題.

老京張鐵路是1909年由“中國(guó)鐵路之父”詹天佑主持設(shè)計(jì)建造的中國(guó)第一條干線鐵路,全長(zhǎng)約210千米,用“人”字形鐵軌鋪筑的方式解決了火車上山的問題.京張高鐵是2022年北京至張家口冬奧會(huì)的重點(diǎn)配套交通基礎(chǔ)設(shè)施,全長(zhǎng)約175千米,預(yù)計(jì)2019年底建成通車.京張高鐵的預(yù)設(shè)平均速度將是老京張鐵路的5倍,可以提前5個(gè)小時(shí)到達(dá),求京張高鐵的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2,2,3,4四個(gè)數(shù)中隨機(jī)取兩個(gè)數(shù),第一個(gè)作為個(gè)位上的數(shù)字,第二個(gè)作為十位上的數(shù)字,組成一個(gè)兩位數(shù),則這個(gè)兩位數(shù)是2的倍數(shù)的概率是 ( )

A. 1 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,點(diǎn)EAB上,把ABC沿CE折疊后,點(diǎn)B恰好與斜邊AC的中點(diǎn)D重合.

(1)求證:△ACE為等腰三角形;

(2)AB=6,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線AB分別于xy軸交于A,B兩點(diǎn),過點(diǎn)B的直線交x軸正半軸于點(diǎn)C,且OBOC=31.

1)直接寫出點(diǎn)A、B、C的坐標(biāo);

2)在線段OB上存在點(diǎn)P,使點(diǎn)PB,C的距離相等,求出點(diǎn)P的坐標(biāo);

3)在x軸上方存在點(diǎn)D,使得以點(diǎn)A,BD為頂點(diǎn)的三角形與△ABC全等,求出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義表示不大于x的最大整數(shù),例如,

1)將、、按照從小到大的順序用不等號(hào)連接:_______________;

2)利用(1)中的結(jié)論,方程的解為___________________

查看答案和解析>>

同步練習(xí)冊(cè)答案