方程的根是             ,方程的根是           .

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面的解題過程,并回答后面的問題:
已知:方程x2-2x-1=0,求作一個一元二次方程,使它的根是原方程的各根的平方.
解:設方程x2-2x-1=0的兩個根是x1、x2,則所求方程的兩個根是x12、x22
∵x1+x2=2,x1x2=-1      (第一步)
∴x12+x22=(x1+x22-2x1x2    (第二步)
=22-2×(-1)
=6
x12x22=(x1x22=1    (第三步)
請你回答:
(1)第一步的依據(jù)是:
一元二次方程根與系數(shù)的關系
一元二次方程根與系數(shù)的關系

(2)第二步變形用到的公式是:
完全平方公式
完全平方公式

(3)第三步變形用到的公式是:
a2b2=(ab)2
a2b2=(ab)2

(4)所求的一元二次方程是:
x2-6x+1=0
x2-6x+1=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:在一元二次方程ax2+bx+c=0(a≠0)中,如果b2-4ac≥0,記它的兩個根為x1,x2,由求根公式計算兩個根的和與積為x1+x2=-
b
a
,x1•x2=
c
a
,一元二次方程兩個根的和、兩個根的積是由方程的系數(shù)確定的,這就是一元二次方程根與系數(shù)的關系.根據(jù)這段材料解決下列問題:
(1)設方程2x2-4x-1=0的兩個根分別為x1,x2,則x1+x2=
2
2
,x1•x2=
-
1
2
-
1
2

(2)如果方程x2+bx-1=0的一個根是2+
3
,求方程的另一個根和實數(shù)b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀下面的解題過程,并回答后面的問題:
已知:方程x2-2x-1=0,求作一個一元二次方程,使它的根是原方程的各根的平方.
解:設方程x2-2x-1=0的兩個根是x1、x2,則所求方程的兩個根是x12、x22
∵x1+x2=2,x1x2=-1     (第一步)
∴x12+x22=(x1+x22-2x1x2   (第二步)
=22-2×(-1)
=6
x12x22=(x1x22=1   (第三步)
請你回答:
(1)第一步的依據(jù)是:______
(2)第二步變形用到的公式是:______
(3)第三步變形用到的公式是:______
(4)所求的一元二次方程是:______.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年四川省達州市宣漢縣南橋中學九年級(上)第一次月考數(shù)學試卷(解析版) 題型:選擇題

方程x2-kx-2=0的根的情況是( )
A.方程有兩個不相等的實數(shù)根
B.方程有兩個相等的實數(shù)根
C.方程沒有實數(shù)根
D.方程的根的情況與k的取值有關

查看答案和解析>>

科目:初中數(shù)學 來源:2009年四川省都江堰市中考數(shù)學一模試卷(解析版) 題型:解答題

(2007•青海)先閱讀,再填空解答:
方程x2-3x-4=0的根是:x1=-1,x2=4,則x1+x2=3,x1x2=-4;
方程3x2+10x+8=0的根是:x1=-2,,則x1+x2=-,x1x2=
(1)方程2x2+x-3=0的根是:x1=______,x2=______,則x1+x2=______,x1x2=______;
(2)若x1,x2是關于x的一元二次方程ax2+bx+c=0(a≠0,且a,b,c為常數(shù))的兩個實數(shù)根,那么x1+x2,x1x2與系數(shù)a,b,c的關系是:x1+x2=______,x1x2=______;
(3)如果x1,x2是方程x2+x-3=0的兩個根,根據(jù)(2)所得結論,求x12+x22的值.

查看答案和解析>>

同步練習冊答案