(2007•宜昌)如圖,四邊形ABCD是矩形,F(xiàn)是AD上一點,E是CB延長線上一點,且四邊形AECF是等腰梯形.下列結(jié)論中不一定正確的是( )

A.AE=FC
B.AD=BC
C.∠AEB=∠CFD
D.BE=AF
【答案】分析:已知四邊形AECF是等腰梯形可得AE=FC.又因為四邊形ABCD是矩形可得AD=BC,∠AEB=CFD.
解答:解:已知四邊形AECF是等腰梯形,可得AE=FC;
又∵四邊形ABCD的矩形,可得AD=BC;
∵AB=CD,AE=FC,∠ABC=∠CDF,
∴△AEB≌△CFD,
∴∠AEB=∠CFD.
所以D不正確,故選D.
點評:本題考查的是等腰梯形的性質(zhì)以及矩形的性質(zhì)的理解及運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•宜昌)如圖1,點A是直線y=kx(k>0,且k為常數(shù))上一動點,以A為頂點的拋物線y=(x-h)2+m交直線y=kx于另一點E,交y軸于點F,拋物線的對稱軸交x軸于點B,交直線EF于點C.(點A,E,F(xiàn)兩兩不重合)
(1)請寫出h與m之間的關(guān)系;(用含的k式子表示)
(2)當點A運動到使EF與x軸平行時(如圖2),求線段AC與OF的比值;
(3)當點A運動到使點F的位置最低時(如圖3),求線段AC與OF的比值.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年湖北省宜昌市中考數(shù)學試卷(解析版) 題型:解答題

(2007•宜昌)如圖1,點A是直線y=kx(k>0,且k為常數(shù))上一動點,以A為頂點的拋物線y=(x-h)2+m交直線y=kx于另一點E,交y軸于點F,拋物線的對稱軸交x軸于點B,交直線EF于點C.(點A,E,F(xiàn)兩兩不重合)
(1)請寫出h與m之間的關(guān)系;(用含的k式子表示)
(2)當點A運動到使EF與x軸平行時(如圖2),求線段AC與OF的比值;
(3)當點A運動到使點F的位置最低時(如圖3),求線段AC與OF的比值.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《四邊形》(08)(解析版) 題型:解答題

(2007•宜昌)如圖1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,連接AE.AC和BE相交于點O.
(1)判斷四邊形ABCE是怎樣的四邊形,說明理由;
(2)如圖2,P是線段BC上一動點(圖2),(不與點B、C重合),連接PO并延長交線段AB于點Q,QR⊥BD,垂足為點R.
①四邊形PQED的面積是否隨點P的運動而發(fā)生變化?若變化,請說明理由;若不變,求出四邊形PQED的面積;
②當線段BP的長為何值時,△PQR與△BOC相似.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年湖北省宜昌市中考數(shù)學試卷(解析版) 題型:解答題

(2007•宜昌)如圖1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,連接AE.AC和BE相交于點O.
(1)判斷四邊形ABCE是怎樣的四邊形,說明理由;
(2)如圖2,P是線段BC上一動點(圖2),(不與點B、C重合),連接PO并延長交線段AB于點Q,QR⊥BD,垂足為點R.
①四邊形PQED的面積是否隨點P的運動而發(fā)生變化?若變化,請說明理由;若不變,求出四邊形PQED的面積;
②當線段BP的長為何值時,△PQR與△BOC相似.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年湖北省宜昌市中考數(shù)學試卷(解析版) 題型:選擇題

(2007•宜昌)如圖所示是一個圓錐體,它的俯視圖是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案