【題目】暑假期間,某學(xué)校計(jì)劃用彩色的地面磚鋪設(shè)教學(xué)樓門前一塊矩形操場ABCD的地面.已知這個(gè)矩形操場地面的長為100m,寬為80m,圖案設(shè)計(jì)如圖所示:操場的四角為小正方形,陰影部分為四個(gè)矩形,四個(gè)矩形的寬都為小正方形的邊長,在實(shí)際鋪設(shè)的過程總,陰影部分鋪紅色地面磚,其余部分鋪灰色地面磚.
(1)如果操場上鋪灰色地面磚的面積是鋪紅色地面磚面積的4倍,那么操場四角的每個(gè)小正方形邊長是多少米?
(2)如果灰色地面磚的價(jià)格為每平方米30元,紅色地面磚的價(jià)格為每平方米20元,學(xué),F(xiàn)有15萬元資金,問這些資金是否能購買所需的全部地面磚?如果能購買所學(xué)的全部地面磚,則剩余資金是多少元?如果不能購買所需的全部地面磚,教育局還應(yīng)該至少給學(xué)校解決多少資金?
【答案】
(1)解:設(shè)操場四角的每個(gè)小正方形邊長是x米,根據(jù)題意,
得:4x2+(100﹣2x)(80﹣2x)=4[2x(100﹣2x)+2x(80﹣2x)],
整理,得:x2﹣45x+200=0,
解得:x1=5,x2=40(舍去),
故操場四角的每個(gè)小正方形邊長是5米
(2)解:設(shè)鋪矩形廣場地面的總費(fèi)用為y元,廣場四角的小正方形的邊長為x米,
則,y=30×[4x2+(100﹣2x)(80﹣2x)]+20×[2x(100﹣2x)+2x(80﹣2x)]
即:y=80x2﹣3600x+240000
配方得,y=80(x﹣22.5)2+199500
當(dāng)x=22.5時(shí),y的值最小,最小值為19.95萬元>15萬元,
故這些資金不能購買所需的全部地面磚,教育局還應(yīng)該至少給學(xué)校解決19.95﹣15=4.95萬元資金
【解析】(1)設(shè)小正方形的邊長為x米,表示出里邊大矩形的長為(100﹣2x)米,寬為(80﹣2x)米,利用灰色部分的面積=4個(gè)小正方形的面積+里邊大矩形的面積,紅色部分面積=上下兩個(gè)矩形面積+左右兩個(gè)矩形面積,根據(jù)灰色地面磚的面積是鋪紅色地面磚面積的4倍列出關(guān)于x的方程,求出方程的解得到x的值,即為小正方形的邊長;(2)設(shè)鋪矩形廣場地面的總費(fèi)用為y元,廣場四角的小正方形的邊長為x米,根據(jù)等量關(guān)系“總費(fèi)用=鋪白色地面磚的費(fèi)用+鋪綠色地面磚的費(fèi)用”列出y關(guān)于x的函數(shù),求得最小值,與15萬元比較可得是否夠用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣2,0),B(2,0),C(3,5).
(1)求過點(diǎn)A,C的直線解析式和過點(diǎn)A,B,C的拋物線的解析式;
(2)求過點(diǎn)A,B及拋物線的頂點(diǎn)D的⊙P的圓心P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)Q,使AQ與⊙P相切,若存在請(qǐng)求出Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)與x軸交于點(diǎn)A(﹣5,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)若點(diǎn)E為x軸下方拋物線上的一動(dòng)點(diǎn),當(dāng)S△ABE=S△ABC時(shí),求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使∠BAP=∠CAE?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D、E,AD與BE相交于點(diǎn)F.
(1)求證:△ACD∽△BFD;
(2)若∠ABD=45°,AC=3時(shí),求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0≤t<12),連接DE,當(dāng)△BDE是直角三角形時(shí),t的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象,有下列4個(gè)結(jié)論:①abc>0;②b>a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸只有一個(gè)交點(diǎn)A(﹣2,0),與y軸交于點(diǎn)B(0,4).
(1)求拋物線對(duì)應(yīng)的函數(shù)解析式;
(2)過點(diǎn)B作平行于x軸的直線交拋物線與點(diǎn)C.
①若點(diǎn)M在拋物線的AB段(不含A、B兩點(diǎn))上,求四邊形BMAC面積最大時(shí),點(diǎn)M的坐標(biāo);
②在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)P,使以P、A、B、C為頂點(diǎn)的四邊形是平行四邊形,若存在直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B.C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明,若不成立,請(qǐng)說明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長BD交CF于點(diǎn)H.
①探究BD與CF之間的位置關(guān)系,并說明理由;
②當(dāng)AB= ,AD= +1時(shí),求線段DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知式子M=(a+5)x3+7x2﹣2x+5是關(guān)于x的二次多項(xiàng)式,且二次項(xiàng)系數(shù)為b,數(shù)軸上A、B兩點(diǎn)所對(duì)應(yīng)的數(shù)分別是a和b.
(1)則a= ,b= .A、B兩點(diǎn)之間的距離= ;
(2)有一動(dòng)點(diǎn)P從點(diǎn)A出發(fā)第一次向左運(yùn)動(dòng)1個(gè)單位長度,然后在新的位置第二次運(yùn)動(dòng),向右運(yùn)動(dòng)2個(gè)單位長度,在此位置第三次運(yùn)動(dòng),向左運(yùn)動(dòng)3個(gè)單位長度…按照如此規(guī)律不斷地左右運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到2015次時(shí),求點(diǎn)P所對(duì)應(yīng)的有理數(shù).
(3)在(2)的條件下,點(diǎn)P會(huì)不會(huì)在某次運(yùn)動(dòng)時(shí)恰好到達(dá)某一位置,使點(diǎn)P到點(diǎn)B的距離是點(diǎn)P到點(diǎn)A的距離的3倍?若可能請(qǐng)求出此時(shí)點(diǎn)P的位置,并直接指出是第幾次運(yùn)動(dòng),若不可能請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com