【題目】如圖所示,CD為⊙O的直徑,AD,AB,EC分別與⊙O相切于點D,E,C(AD<BC),連接DE并延長與與直線BC相交于點P,連接OB.
(1)求證:BC=BP;
(2)若DEOB=40,求ADBC的值;
(3)在(2)條件下,若S△ADE:S△PBE=16:25,求S△ADE和S△PBE.
【答案】(1)證明見解析;(2)20;(3).
【解析】
(1)連接EC,根據(jù)切線長定理可得BC=BE,再證得BE=BP,即可證得結(jié)論;(2)如圖2中,連接OA、CE,EC交OB于K.先證明△OCK∽△OBC,可得OC2=OKOB=DEOB=20,再證明△ADO∽△OCB,可得ADBC=ODOC=OC=20;(3)由△ADE∽△BPE,可得,設DE=4k,PE=5k,由△CDE∽△PDC,可得CD2=DEDP,即80=36k2,推出k=,求出△PEC的面積即可解決問題.
(1)證明:如圖1中,連接EC.
∵BC、BE是⊙O的切線,
∴BC=BE,
∴∠BCE=∠BEC,
∵CD是直徑,
∴∠CED=∠CEB=90°,
∴∠ECB+∠P=90°,∠CEB+∠CEB+∠PEB=90°,
∴∠P=∠PEB,
∴BE=PB,
∴BC=BP.
(2)解:如圖2中,連接OA、CE,EC交OB于K.
∵BC=BE,OC=OE,
∴OB垂直平分線段EC,
∴∠OKC=∠OCB=90°,CK=EK,
∵OC=OD,
∴OK=DE,
∵△OCK∽△OBC,
∴OC2=OKOB=DEOB=20,
∵AD、AE是切線,
∴AD=AE,∵OD=OE,OA=OA,
∴△AOD≌△AOE,
∴∠AOD=∠AOE,同法證明,∠BOE=∠BOC,
∴∠AOB=90°,
∵∠AOD+∠BOC=90°,∠BOC+∠CBO=90°,
∴∠AOD=∠CBO,
∵∠ADO=∠BCO=90°,
∴△ADO∽△OCB,
∴ADBC=ODOC=OC2=20.
(3)如圖2中,∵S△ADE:S△PBE=16:25,AD∥PB,
∴△ADE∽△BPE,
∴=,設DE=4k,PE=5k,
∵△CDE∽△PDC,
∴CD2=DEDP,
∴80=36k2,
∴k=,
∴DE=,PE=,EC=,
∴S△ECP=ECPE=,∵BC=BP,
∴S△PEB=S△PEC=,
∴S△ADE=S△PEB=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點O、點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是( 。
A. 60° B. 55° C. 50° D. 45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是∠AOB內(nèi)任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當△PMN周長取最小值時,則∠MPN的度數(shù)為( )
A. 140° B. 100° C. 50° D. 40°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先填寫表,通過觀察后再回答問題:
a | … | 0.0001 | 0.01 | 1 | 100 | 10000 | … |
… | 0.01 | x | 1 | y | 100 | … |
(1)表格中x= ,y= ;
(2)從表格中探究a與數(shù)位的規(guī)律,并利用這個規(guī)律解決下面兩個問題:
①已知≈3.16,則≈ ;
②已知=8.973,若=897.3,用含m的代數(shù)式表示b,則b= ;
(3)試比較與a的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設備,現(xiàn)有甲、乙兩種型號的設備可供選購. 經(jīng)調(diào)查:購買3臺甲型設備比購買2臺乙型設備多花16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元.
(1)求甲、乙兩種型號設備的價格;
(2)該公司經(jīng)預算決定購買節(jié)省能源的新設備的資金不超過110萬元,你認為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設備的產(chǎn)量為240噸/月,乙型設備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請你為該公司設計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】許多代數(shù)恒等式可以借助圖形的面積關(guān)系直觀表達,如圖①,根據(jù)圖中面積關(guān)系可以得到:。
(1)如圖②,根據(jù)圖中面積關(guān)系,寫出一個關(guān)于的等式 ;
(2)利用(1)中的等式求解:,則 ;
(3)小明用8個面積一樣大的長方形(寬,長)拼圖,拼出了如圖甲、乙的兩種圖案;圖案甲是一個大的正方形,中間陰影部分是邊長為3的小正方形;圖案乙是一個大的長方形,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某區(qū)對即將參加中考的5000名初中畢業(yè)生進行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和不完整的頻數(shù)分布直方圖,請根據(jù)圖表信息回答下列問題:
初中畢業(yè)生視力抽樣調(diào)查頻數(shù)分布表
視力 | 頻數(shù)(人) | 頻率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次調(diào)查的樣本容量為 ;
(2)在頻數(shù)分布表中,a= ,b= ,并將頻數(shù)分布直方圖補充完整;
(3)若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計全區(qū)初中畢業(yè)生中視力正常的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當∠BDA=115°時,∠EDC=______°,∠DEC=______°;點D從B向C運動時,∠BDA逐漸變______(填“大”或“小”);
(2)當DC等于多少時,△ABD≌△DCE,請說明理由;
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,平面直角坐標系中,拋物線y=ax2﹣4ax+c與直線y=kx+1(k≠0)交于y軸上一點A和第一象限內(nèi)一點B,該拋物線頂點H的縱坐標為5.
(1)求拋物線的解析式;
(2)連接AH、BH,拋物線的對稱軸與直線y=kx+1(k≠0)交于點K,若S△AHB=,求k的值;
(3)在(2)的條件下,點P是直線AB上方的拋物線上的一動點(如圖2),連接PA.當∠PAB=45°時,
ⅰ)求點P的坐標;
ⅱ)已知點M在拋物線上,點N在x軸上,當四邊形PBMN為平行四邊形時,請求出點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com