精英家教網(wǎng)已知:如圖,直線l1:y1=a1x-b1與直線l2:y2=a2x-b2相交于點(diǎn)P(-1,2),則方程組的
a1x-y=b1
a2x-y=b2
解為
 
分析:因?yàn)椤爸本l1:y1=aix-b1與直線l2:y2=a2x-b2相交于點(diǎn)P(-1,2)”,所以x=-1、y=2就是方程組
a1x-y=b1
a2x-y=b2
的解.
解答:解:∵直線l1:y1=aix-b1與直線l2:y2=a2x-b2相交于點(diǎn)P(-1,2);
∴x=-1、y=2就是方程組
a1x-y=b1
a2x-y=b2
的解;
∴方程組的
a1x-y=b1
a2x-y=b2
解為
x=-1
y=2
點(diǎn)評(píng):本題考查的是二元一次方程和一次函數(shù)的綜合問題,兩直線的交點(diǎn)就是兩直線解析式所組成方程組的解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、已知:如圖,直線l1∥l2,AB⊥l1垂足為O,BC與l2相交于點(diǎn)D,∠1=43°,求∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南潯區(qū)一模)已知:如圖,直線l1:y=ax+2b與直線l2:y=cx+2d的交點(diǎn)坐標(biāo)為(2,3),則a+b+c+d的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明(填空):
兩條直線被第三條直線所截.如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行.
已知:如圖,直線l1,l2被l3所截,∠1+∠2=180°.
求證:l1
l2
證明:假設(shè)l1
不平行
不平行
l2,即l1與l2交與相交于一點(diǎn)P.
則∠1+∠2+∠P
=
=
180°
(三角形內(nèi)角和定理)
(三角形內(nèi)角和定理)

所以∠1+∠2
180°,這與
已知
已知
矛盾,故
假設(shè)
假設(shè)
不成立.
所以
l1∥l2
l1∥l2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,直線l1與y軸交點(diǎn)坐標(biāo)為(0,-1),直線l2與x軸交點(diǎn)坐標(biāo)為(3,0),兩直線交點(diǎn)為P(1,1),解答下面問題:
(1)求出直線l1的解析式;
(2)請(qǐng)列出一個(gè)二元一次方程組,要求能夠根據(jù)圖象所提供的信息條件直接得到該方程組的解為
x=1
y=1

(3)當(dāng)x為何值時(shí),l1、l2表示的兩個(gè)一次函數(shù)的函數(shù)值都大于0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,直線l1,l2,l3表示三條相互交叉的公路,現(xiàn)要建一個(gè)塔臺(tái),若要求它到三條公路的距離都相等,試問:
(1)可選擇的地點(diǎn)有幾處?
(2)你能畫出塔臺(tái)的位置嗎?

查看答案和解析>>

同步練習(xí)冊(cè)答案