求圖中陰影部分的面積.

答案:
解析:

  解:(1)BC=

  ∴r=5.

  ∴

  ∵

  ∴

  (2)14-2=12,132-122=25,∴BE=5,

  2×5=10,∴陰影部分的面積為10.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

等邊△ABC的高為3 cm,以AB為邊的正方形面積為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

學(xué)習(xí)了勾股定理以后,有同學(xué)提出“在直角三角形中,三邊滿足a2+b2=c2,或許其他的三角形三邊也有這樣的關(guān)系”.讓我們來做一個(gè)實(shí)驗(yàn)!

(1)畫出任意一個(gè)銳角三角形,量出各邊的長(zhǎng)度(精確到1 mm),較短的兩條邊長(zhǎng)分別是a=________mm;b=________mm;較長(zhǎng)的一條邊長(zhǎng)c=________mm.比較:a2+b2________c2(填“>”,“<”或“=”).

(2)畫出任意的一個(gè)鈍角三角形,量出各邊的長(zhǎng)度(精確到1 mm),較短的兩條邊長(zhǎng)分別是a=________mm;b=________mm;較長(zhǎng)的一條邊長(zhǎng)c=________mm.比較:a2+b2________c2(填“>”,“<”或“=”).

(3)根據(jù)以上的操作和結(jié)果,對(duì)這位同學(xué)提出的問題,你猜想的結(jié)論是________.

對(duì)你猜想a2+b2與c2的兩個(gè)關(guān)系,利用勾股定理證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

在△ABC中,∠C=90°,AB=7,BC=5,則邊AC的長(zhǎng)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

如圖,圓柱形容器中,高為1.2 m,底面周長(zhǎng)為1 m,在容器內(nèi)壁離容器底部0.3 m的點(diǎn)B處有一只蚊子,此時(shí)一只壁虎正好在容器外壁,離容器上沿0.3 m與蚊子相對(duì)的點(diǎn)A處,則壁虎捕捉蚊子的最短距離為________m(容器厚度忽略不計(jì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

如圖,在平行四邊形ABCD中,下列結(jié)論錯(cuò)誤的是

[  ]

A.

∠1=∠2

B.

∠BAD=∠BCD

C.

AB=CD

D.

AC⊥BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

如圖,已知點(diǎn)正在面積為4的平行四邊形ABCD的邊上運(yùn)動(dòng),使△ABE的面積為1的點(diǎn)E共有________個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

已知任意四邊形ABCD,且線段AB、BC、CD、DA、AC、BD的中點(diǎn)分別是E、F、G、H、P、Q.

(1)若四邊形ABCD如圖(1)所示,判斷下列結(jié)論是否正確.(正確的在括號(hào)里填“√”,錯(cuò)誤的在括號(hào)里填“×”)

甲:順次連接EF、FG、GH、HE一定得到平行四邊形;(  )

乙:順次連接EQ、QG、GP、PE一定得到平行四邊形.(  )

(2)請(qǐng)選擇甲、乙中的一個(gè),證明你對(duì)它的判斷.

(3)若四邊形ABCD如圖(2)所示,請(qǐng)你判斷(1)中甲、乙兩個(gè)結(jié)論是否成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

如圖所示,菱形ABCD的邊長(zhǎng)為4,∠B=60°,則菱形的面積為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案