如圖,已知點(diǎn)O是正三角形ABC三條高的交點(diǎn),現(xiàn)將⊿AOB繞點(diǎn)O至少要旋轉(zhuǎn)幾度后與△BOC重合………………                                           (      )

A. 60°   B.  120°   C.  240°  D.  360°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知P、A、B是x軸上的三點(diǎn),點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(3,0),且PA:AB=1:2,以AB為直徑畫⊙M交y軸的正半軸于點(diǎn)C.
(1)求證:PC是⊙M的切線;
(2)在x軸上是否存在這樣的點(diǎn)Q,使得直線QC與過A、C、B三點(diǎn)的拋物線只有一個(gè)交點(diǎn)?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)畫⊙N,使得圓心N在x軸的負(fù)半軸上,⊙N與⊙M外切、且與直線PC精英家教網(wǎng)相切于D.問將過A、C、B三點(diǎn)的拋物線平移后能否同時(shí)經(jīng)過P、D、A三點(diǎn),為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知圓心A(0,3),⊙A與x軸相切,⊙B的圓心在x軸的正半軸上,且⊙B與⊙A外切于點(diǎn)P,兩圓的公切線MP交y軸于點(diǎn)M,交x軸于點(diǎn)N.
(1)若sin∠OAB=
45
,求直線MP的解析式及經(jīng)過M、N、B三點(diǎn)的拋物線的解析式.
(2)若⊙A的位置大小不變,⊙B的圓心在x軸的正半軸上移動(dòng),并使⊙B與⊙A始終外切,過M作⊙B的切線MC,切點(diǎn)為C,在此變化過程中探究:
①四邊形OMCB是什么四邊形,對(duì)你的結(jié)論加以證明.
②經(jīng)過M、N、B三點(diǎn)的拋物線內(nèi)是否存在以BN為腰的等腰三角形?若存在,表示出來;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•歷城區(qū)三模)如圖,已知點(diǎn)(1,2)在函數(shù)y=
k
x
(x>0)的圖象上,矩形ABCD的邊BC在x正半軸上,E是對(duì)角線AC、BD的交點(diǎn),函數(shù)y=
k
x
(x>0)的圖象又經(jīng)過A,E兩點(diǎn),點(diǎn)E的縱坐標(biāo)為m.
(1)求k的值;
(2)求點(diǎn)A的坐標(biāo)(用m表示);
(3)是否存在實(shí)數(shù)m,使四邊形ABCD為正方形?若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,已知點(diǎn)A的坐標(biāo)是(-
3
,0),點(diǎn)B的坐標(biāo)是(3
3
,0),以AB為直徑作⊙M,交y軸的負(fù)半軸于點(diǎn)C,交y正半軸于點(diǎn)D,連接AC、BC,過A、B、C三點(diǎn)作拋物線.
(1)求該拋物線的解析式;
(2)連接D M并延長(zhǎng)交⊙M于點(diǎn)E,過點(diǎn)E作⊙M的切線分別交x軸、y軸于點(diǎn)F、G,求直線FG的解析式;
(3)在拋物線上是否存在這樣的點(diǎn)P,使得以A、B、C、P為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年四川省達(dá)州一中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知,如圖,已知點(diǎn)A的坐標(biāo)是(,0),點(diǎn)B的坐標(biāo)是(,0),以AB為直徑作⊙M,交y軸的負(fù)半軸于點(diǎn)C,交y正半軸于點(diǎn)D,連接AC、BC,過A、B、C三點(diǎn)作拋物線.
(1)求該拋物線的解析式;
(2)連接D M并延長(zhǎng)交⊙M于點(diǎn)E,過點(diǎn)E作⊙M的切線分別交x軸、y軸于點(diǎn)F、G,求直線FG的解析式;
(3)在拋物線上是否存在這樣的點(diǎn)P,使得以A、B、C、P為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案