(2011•武漢模擬)在等腰△ABC中,AB=AC,邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角度m得到線段AD.
(1)如圖1,若∠BAC=30°,30°<m<l80°,連接BD,請(qǐng)用含m的式子表示∠DBC的度數(shù);
(2)如圖2,若∠BAC=60°,0°<m<360°,連接BD、DC,直接寫出△BDC為等腰三角形時(shí)m所有可能的取值.
(3)如圖3,若∠BAC=90°,射線AD與直線BC相交于點(diǎn)E,是否存在旋轉(zhuǎn)角度m,使AE:BE=
2
,若存在,求出所有符合條件的m的值,若不存在,請(qǐng)說(shuō)明理由.
分析:(1)根據(jù)三角形內(nèi)角和和等腰三角形的性質(zhì)分別求出∠ABC,∠ABD的度數(shù),相減即可求解;
(2)分四種情況:討論得到△BDC為等腰三角形時(shí)m的取值;
(3)分E點(diǎn)在BC上和CB的延長(zhǎng)線上兩種情況討論求解.
解答:解:(1)∠ABC=(180°-30°)÷2=75°,
∠ABD=(180°-m)÷2=90°-
1
2
m,
∠DBC=∠ABC-∠ABD=75°-(90°-
1
2
m)=
1
2
m-15°;

(2)由分析圖形可知m的取值為:30°,120°,210°,300°;

(3)存在2個(gè)符合條件的m的值:m=30°或m=330°.
如圖①:過(guò)E作EF⊥AB于F.
在Rt△BEF中,∵∠FBE=45°,
∴BE=
2
EF,
∵AE:BE=
2
;
∴AE=2EF;
又∵∠AFE=90°;
∴∠FAE=30°.即m=30°
在Rt△AEF中,∵∠FAE=30°,
∴AE=2EF,
∴AE:BE=
2
;
如圖②:同理可得:AE:BE=
2
點(diǎn)評(píng):綜合考查了等腰三角形的性質(zhì),等腰直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),注意分類思想的運(yùn)用,是考試壓軸題,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•武漢模擬)要使式子
3-a
在實(shí)數(shù)范圍內(nèi)有意義,字母a的取值必須滿足(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•武漢模擬)下列各式中計(jì)算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•武漢模擬)如圖,在以AB為直徑的半圓中,有一個(gè)邊長(zhǎng)為1的內(nèi)接正方形CDEF,則,以AC和BC的長(zhǎng)為兩根的一元二次方程是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•武漢模擬)設(shè)S1=1+
1
12
+
1
22
,S2=1+
1
22
+
1
32
,S3=1+
1
32
+
1
42
…,Sn=1+
1
n2
+
1
(n+1)2
,設(shè)S=
S1
+
S2
+…+
Sn
,其中n為正整數(shù),則用含n的代數(shù)式表示S為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•武漢模擬)半徑為4的正六邊形的邊心距為
2
3
2
3
,中心角等于
60°
60°
度,面積為
24
3
24
3

查看答案和解析>>

同步練習(xí)冊(cè)答案