如圖,AB為⊙O的直徑,AD與⊙O相切于一點(diǎn)A,DE與⊙O相切于點(diǎn)E,點(diǎn)C為DE延長(zhǎng)線(xiàn)上一點(diǎn),且CE=CB.
⑴求證:BC為⊙O的切線(xiàn);
⑵若,AD=2,求線(xiàn)段BC的長(zhǎng).
(1)證明見(jiàn)解析;(2)
【解析】
試題分析:(1)因?yàn)?/span>BC經(jīng)過(guò)圓的半徑的外端,只要證明AB⊥BC即可.連接OE、OC,利用△OBC≌△OEC,得到∠OBC=90°即可證明BC為⊙O的切線(xiàn).
(2)作DF⊥BC于點(diǎn)F,構(gòu)造Rt△DFC,利用勾股定理解答即可.
試題解析:(1)證明:連接OE、OC.
∵CB=CE,OB=OE,OC=OC,
∴△OBC≌△OEC.
∴∠OBC=∠OEC.
又∵DE與⊙O相切于點(diǎn)E,
∴∠OEC=90°.
∴∠OBC=90°.
∴BC為⊙O的切線(xiàn).
(2)解:過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,則四邊形ABFD是矩形,BF=AD=2,DF=AB=2.
∵AD、DC、BC分別切⊙O于點(diǎn)A、E、B,
∴DA=DE,CE=CB.
設(shè)BC為x,則CF=x-2,DC=x+2.
在Rt△DFC中,(x+2)2-(x-2)2=(2)2,解得x=.
∴BC=.
考點(diǎn): 1.切線(xiàn)的判定與性質(zhì);2.勾股定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、1cm | B、2cm | C、3cm | D、4cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應(yīng)性考試數(shù)學(xué)試題 題型:013
如圖,AB為⊙O的直甲徑,PD切⊙O于點(diǎn)C,交AB的延長(zhǎng)線(xiàn)于D,且CO=CD,則∠PCA=
A.60°
B.65°
C.67.5°
D.75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2008年福建省福州一中高中招生(面向福州以外)綜合素質(zhì)測(cè)試數(shù)學(xué)試卷(解析版) 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com