如圖,已知直線AB、CD相交于O,如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y+4)°,則∠AOD的度數(shù)為
110°
110°
分析:∠AOC與∠BOD是對頂角;∠AOC與∠BOC是鄰補(bǔ)角.
解答:解:根據(jù)圖示知,∠AOC=∠BOD,即2x°=(y+4)°,①
∠AOC+∠BOC=180°,即2x°+(x+y+9)°=180°,②
由①②解得,x°=35°,y°=66°,
所以∠AOD=∠BOC=(x+y+9)°=110°.
故答案是:110°.
點(diǎn)評:本題考查了對頂角、鄰補(bǔ)角.解答該題時(shí),是利用了方程來求∠AOD的度數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,已知直線AB,CD相交于點(diǎn)O,OA平分∠EOC,∠EOC=70°,則∠BOD的度數(shù)等于
35
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知直線AB、CD相交于點(diǎn)O,OE平分∠BOC,如果∠BOE=50°,那么∠AOC=
80
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線AB和CD相交于O點(diǎn),∠DOE是直角,OF平分∠AOE,∠BOD=22°,求∠COF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線AB∥CD,∠A=∠C=100°,E、F在CD上,且滿足∠DBF=∠ABD,BE平分∠CBF.
(1)直線AD與BC有何位置關(guān)系?請說明理由.
(2)求∠DBE的度數(shù).
(3)若平行移動AD,在平行移動AD的過程中,是否存在某種情況,使∠BEC=∠ADB?若存在,求出其度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線AB∥CD,EM⊥FM,∠MFD=25°,求∠MEB的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案