【題目】如圖ABC與DEF都是等腰直角三角形,ACB=EDF=90°,且點(diǎn)D在AB邊上,AB、EF的中點(diǎn)均為O,連結(jié)BF、CD、CO,顯然點(diǎn)C、F、O在同一條直線上,可以證明BOF≌△COD,則BF=CD

解決問(wèn)題

1將圖中的RtDEF繞點(diǎn)O旋轉(zhuǎn)得到圖,猜想此時(shí)線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;

2如圖,若ABC與DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述1中的結(jié)論仍然成立嗎?如果成立,請(qǐng)說(shuō)明理由;如不成立,請(qǐng)求出BF與CD之間的數(shù)量關(guān)系;

3如圖,若ABC與DEF都是等腰三角形,AB、EF的中點(diǎn)均為0,且頂角ACB=EDF=α,請(qǐng)直接寫(xiě)出的值用含α的式子表示出來(lái)

【答案】1BF=CD證明見(jiàn)解析;2)(1中的結(jié)論不成立理由見(jiàn)解析;3=tan

【解析】

試題分析:1如答圖所示,連接OC、OD,證明BOF≌△COD;

2如答圖所示,連接OC、OD,證明BOF∽△COD,相似比為

3如答圖所示,連接OC、OD,證明BOF∽△COD,相似比為tan

試題解析:1猜想:BF=CD理由如下:

如答圖所示,連接OC、OD

∵△ABC為等腰直角三角形,點(diǎn)O為斜邊AB的中點(diǎn),

OB=OC,BOC=90°

∵△DEF為等腰直角三角形,點(diǎn)O為斜邊EF的中點(diǎn),

OF=OD,DOF=90°

∵∠BOF=BOC+COF=90°+COF,COD=DOF+COF=90°+COF,

∴∠BOF=COD

BOF與COD中,

∴△BOF≌△CODSAS,

BF=CD

2答:1中的結(jié)論不成立

如答圖所示,連接OC、OD

∵△ABC為等邊三角形,點(diǎn)O為邊AB的中點(diǎn),

=tan30°=BOC=90°

∵△DEF為等邊三角形,點(diǎn)O為邊EF的中點(diǎn),

=tan30°=,DOF=90°

∵∠BOF=BOC+COF=90°+COF,COD=DOF+COF=90°+COF,

∴∠BOF=COD

BOF與COD中,

,BOF=COD,

∴△BOF∽△COD,

3如答圖所示,連接OC、OD

∵△ABC為等腰三角形,點(diǎn)O為底邊AB的中點(diǎn),

=tan,BOC=90°

∵△DEF為等腰三角形,點(diǎn)O為底邊EF的中點(diǎn),

=tanDOF=90°

==tan

∵∠BOF=BOC+COF=90°+COF,COD=DOF+COF=90°+COF,

∴∠BOF=COD

BOF與COD中,

==tan,BOF=COD,

∴△BOF∽△COD,

=tan

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各統(tǒng)計(jì)量中,表示一組數(shù)據(jù)離散程度的量是( )

A.平均數(shù)B.方差C.眾數(shù)D.中位數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)(﹣32)關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某土建工程共動(dòng)用15臺(tái)挖運(yùn)機(jī)械,每臺(tái)機(jī)械每小時(shí)能挖土3 m3或運(yùn)土2 m3.為了使挖土的工作和運(yùn)土的工作同時(shí)結(jié)束,若設(shè)安排了x臺(tái)機(jī)械挖土,則x應(yīng)滿(mǎn)足的方程是( )

A. 2x=3(15-x) B. 3x=2(15-x)

C. 15-2x=3x D. 3x-2x=15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=﹣2x2﹣3與y軸交點(diǎn)的縱坐標(biāo)為(
A.﹣3
B.﹣4
C.﹣5
D.﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A3,﹣1)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)A′的坐標(biāo)是(

A.(﹣3,﹣1B.3,1C.(﹣31D.(﹣1,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為1的小正方形組成的正方形網(wǎng)格中建立如圖片所示的平面直角坐標(biāo)系,已知格點(diǎn)三角形ABC(三角形的三個(gè)頂點(diǎn)都在小正方形上)

(1)畫(huà)出△ABC關(guān)于直線l:x=﹣1的對(duì)稱(chēng)三角形△A1B1C1;并寫(xiě)出A1、B1、C1的坐標(biāo).
(2)在直線x=﹣l上找一點(diǎn)D,使BD+CD最小,滿(mǎn)足條件的D點(diǎn)為
提示:直線x=﹣l是過(guò)點(diǎn)(﹣1,0)且垂直于x軸的直線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從2014年春季開(kāi)始,我縣農(nóng)村實(shí)行垃圾分類(lèi)集中處理,對(duì)農(nóng)村環(huán)境進(jìn)行綜合整治,靚化了我們的家園.現(xiàn)在某村要清理一個(gè)衛(wèi)生死角內(nèi)的垃圾,若用甲、乙兩車(chē)運(yùn)送,兩車(chē)各運(yùn)15趟可完成,已知甲、乙兩車(chē)單獨(dú)運(yùn)完此堆垃圾,乙車(chē)所運(yùn)趟數(shù)是甲車(chē)的3倍,求甲、乙兩車(chē)單獨(dú)運(yùn)完此堆垃圾各需運(yùn)多少趟?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】|a|=|b|,則ab的關(guān)系是( )

A. 相等 B. 互為相反數(shù) C. 相等或互為相反數(shù) D. 無(wú)法判斷

查看答案和解析>>

同步練習(xí)冊(cè)答案