一元二次方程x2+4x-3=0根的判別式的值為
28
28
;若它的解為x1和x2,那么x1+x2=
-4
-4
;x1•x2=
-3
-3
分析:根據(jù)一元二次方程根的判別式的定義進行計算;然后根據(jù)根與系數(shù)的關(guān)系得到兩根之和與兩根之積.
解答:解:△=42-4×(-3)=16+12=28;
x1+x2=-
4
1
=-4,x1•x2=-3.
故答案為:28,-4,-3.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程兩個為x1,x2,則x1+x2=-
b
a
,x1•x2=
c
a
.也考查了一元二次方程根的判別式.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

從甲、乙兩題中選做一題,如果兩題都做,只以甲題計分.
甲題:若關(guān)于x的一元二次方程x2-2(2-k)x+k2+12=0有實數(shù)根α、β.
(1)求實數(shù)k的取值范圍;
(2)設(shè)t=
α+βk
,求t的最小值.
乙題:如圖,在△ABC中,點O是AC邊上的一個動點,過點O作直線MN∥BC,設(shè)MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F.當點O運動到何處時,四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知x=1是一元二次方程x2+mx+n=0的一個根,則m2+2mn+n2的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關(guān)于x的一元二次方程x2+(2m-1)x+m2=0有兩個實數(shù)根x1和x2
(1)求實數(shù)m的取值范圍;
(2)當x12+x22=7時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一元二次方程x2-3x+1=0的兩根為x1、x2,則x1+x2-x1•x2=
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•常德)若一元二次方程x2+2x+m=0有實數(shù)解,則m的取值范圍是( 。

查看答案和解析>>

同步練習冊答案