如圖,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于點(diǎn)D,DE⊥AD交AB于點(diǎn)E,M為AE的中點(diǎn),BF⊥BC交CM的延長(zhǎng)線(xiàn)于點(diǎn)F,BD=2,CD=1.下列結(jié)論:①∠AED=∠ADC;②數(shù)學(xué)公式=數(shù)學(xué)公式;③AC•BE=2;④BF=2AC;⑤BE=DE.其中結(jié)論正確的個(gè)數(shù)有________.

①③④⑤
分析:①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,∠EAD=∠DAC;
②易證△ADE∽△ACD,得DE:DA=DC:AC=1:AC,AC不一定等于2;
③當(dāng)FC⊥AB時(shí)成立;
④連接DM,可證DM∥BF∥AC,得FM:MC=BD:DC=4:3;易證△FMB∽△CMA,得比例線(xiàn)段求解;
⑤BE=DE成立.由④可知BM:MA=BF:AC=2:1,而B(niǎo)D:DC=2:1,可知DM∥AC,DM⊥BC,利用直角三角形斜邊上的中線(xiàn)的性質(zhì)判斷.
解答:解:①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,
∵∠EAD=∠DAC,
∴∠AED=∠ADC.
故本選項(xiàng)正確;
②∵∠EAD=∠DAC,∠ADE=∠ACD=90°,
∴△ADE∽△ACD,得DE:DA=DC:AC=1:AC,但AC的值未知,
故不一定正確;
③由①知∠AED=∠ADC,
∴∠BED=∠BDA,
又∵∠DBE=∠ABD,
∴△BED∽△BDA,
∴DE:DA=BE:BD,由②知DE:DA=DC:AC,
∴BE:BD=DC:AC,
∴AC•BE=BD•DC=2.
故本選項(xiàng)正確;
④連接DM.
在Rt△ADE中,MD為斜邊AE的中線(xiàn),則DM=MA.
∴∠MDA=∠MAD=∠DAC,
∴DM∥BF∥AC,
由DM∥BF得FM:MC=BD:DC=2:1;
由BF∥AC得△FMB∽△CMA,有BF:AC=FM:MC=2:1,
∴BF=2AC.
故本選項(xiàng)正確
⑤由④可知BM:MA=BF:AC=2:1,
∵BD:DC=2:1,
∴DM∥AC,DM⊥BC,
∴∠MDA=∠DAC=∠DAM,而∠ADE=90°,
∴DM=MA=ME,在Rt△BDM中,由BM=2AM可知BE=EM,
∴ED=BE.故⑤正確.
綜上所述,①③④⑤正確.
故答案為:①③④⑤.
點(diǎn)評(píng):此題重點(diǎn)考查相似三角形的判定和性質(zhì),綜合性強(qiáng),有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個(gè)三角形,且要求其中一個(gè)三角形是等腰三角形.(保留作圖痕跡,不要求寫(xiě)作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點(diǎn)邊上一點(diǎn),DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(zhǎng)(2)求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點(diǎn)D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長(zhǎng)為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案