【題目】如圖,拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn).
(1)求拋物線的解析式;
(2)如圖1,拋物線的對稱軸交拋物線于點(diǎn),在軸上是否存在點(diǎn),使得的周長最?若存在,求出點(diǎn)坐標(biāo);若不存在,請說明理由;
(3)如圖2,點(diǎn)為直線上方拋物線上的動(dòng)點(diǎn),于點(diǎn),求線段的最大值.
【答案】(1);(2);(3)
【解析】
(1)由題意利用待定系數(shù)法將,代入求解即可;
(2)根據(jù)題意作點(diǎn)關(guān)于軸的對稱點(diǎn),連接,交軸于點(diǎn),此時(shí)的周長最小,并設(shè)直線的解析式為,將,代入,進(jìn)行分析運(yùn)算求解即可;
(3)根據(jù)題意過點(diǎn)作軸,垂足為,交于點(diǎn),進(jìn)而求出點(diǎn)的坐標(biāo)并設(shè)直線的解析式為,將,代入進(jìn)行運(yùn)算以及設(shè)平行于的直線為進(jìn)行分析運(yùn)算.
解:(1)將,代入得,解得,
∴拋物線的解析式為.
(2)作點(diǎn)關(guān)于軸的對稱點(diǎn),連接,交軸于點(diǎn),此時(shí)的周長最。
設(shè)直線的解析式為,將,
代入,得 ,
解得,
∴直線的解析式為
當(dāng)時(shí),
∴點(diǎn)的坐標(biāo)為.
(3)如圖,過點(diǎn)作軸,垂足為,交于點(diǎn).
當(dāng)時(shí),
∴點(diǎn)的坐標(biāo)為
設(shè)直線的解析式為,
將,代入,
得
解得,
∴直線的解析式為
設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為
設(shè)平行于的直線為,
解方程組,
得
由判別式,
得
此時(shí),直線與直線的距離即為的最大值.
求得,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天然生物制藥公司投資制造某藥品,先期投入了部分資金.企劃部門根據(jù)以往經(jīng)驗(yàn)發(fā)現(xiàn),生產(chǎn)銷售中所獲總利潤隨天數(shù)(可以取分?jǐn)?shù))的變化圖象如下,當(dāng)總利潤到達(dá)峰值后會(huì)逐漸下降,當(dāng)利潤下降到萬元時(shí)即為止損點(diǎn),則停止生產(chǎn)
(1)設(shè),求出最大利潤是多少?
(2)在(1)的條件下,經(jīng)公司研究發(fā)現(xiàn)如果添加名工人,在工資成本增加的情況下,總利潤關(guān)系式變?yōu)?/span>,請研究添加名工人后總利潤的最大值,并給出總利潤最大的方案中的值及生產(chǎn)天數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想利用所學(xué)知識(shí)測量一公園門前熱氣球直徑的大小,如圖,當(dāng)熱氣球升到某一位置時(shí),小明在點(diǎn)A處測得熱氣球底部點(diǎn)C、中部點(diǎn)D的仰角分別為50°和60°,已知點(diǎn)O為熱氣球中心,EA⊥AB,OB⊥AB,OB⊥OD,點(diǎn)C在OB上,AB=30m,且點(diǎn)E、A、B、O、D在同一平面內(nèi),根據(jù)以上提供的信息,求熱氣球的直徑約為多少米?(精確到0.1m)
(參考數(shù)據(jù):sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過學(xué)習(xí)銳角三角比,我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值是一一對應(yīng)的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(can),如圖(1)在△ABC中,AB=AC,底角B的鄰對記作canB,這時(shí)canB=底邊/腰=,容易知道一個(gè)角的大小與這個(gè)角的鄰對值也是一一對應(yīng)的.根據(jù)上述角的鄰對的定義,解下列問題:
(1)can30°= ;
(2)如圖(2),已知在△ABC中,AB=AC,canB=,S△ABC=24,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD中,AC⊥BD于點(diǎn)O,AO=CO=4,BO=DO=3,點(diǎn)P為線段AC上的一個(gè)動(dòng)點(diǎn).過點(diǎn)P分別作PM⊥AD于點(diǎn)M,作PN⊥DC于點(diǎn)N. 連接PB,在點(diǎn)P運(yùn)動(dòng)過程中,PM+PN+PB的最小值等于_________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的紙箱里有分別標(biāo)有漢字“熱”“愛”“祖”“國”的四個(gè)小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先搖勻再摸球.
(1)若從中任取一個(gè)球,求摸出球上的漢字剛好是“國”字的概率;
(2)小紅從中任取球,不放回,再從中任取一球,請用樹狀圖或列表法,求小紅取出的兩個(gè)球上的漢字恰好能組成“愛國”或“祖國”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,點(diǎn)P是BC邊上一點(diǎn),連接AP交對角線BD于點(diǎn)E,.作線段AP的中垂線MN分別交線段DC,DB,AP,AB于點(diǎn)M,G,F,N.
(1)求證:;
(2)若,求.
(3)如圖2,在(2)的條件下,連接CF,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù),反比例函數(shù)(a,b,k是常數(shù),且),若其中一部分x,y的對應(yīng)值如表:則不等式的解集是_________.
x | 1 | 2 | 3 | 4 | ||||
3 | 2 | 1 | 0 | |||||
2 | 3 | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,點(diǎn)E是AD的中點(diǎn),連接CE,并延長CE與BA的延長線交于點(diǎn)F, 若∠BCF=90°,則∠D的度數(shù)為( )
A.60°B.55°C.45°D.40°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com