解:(1)①∵四邊形ABCD是矩形,且AB∥x軸,B(-3,3),
∴A(
,3)、C(-3,-
).
∵y=ax+b經(jīng)過A、C兩點(diǎn),
∴
,消去b得:(
+3)a=
+3.
∵k>0,故
+3≠0,∴a=1.
②S=S
△ABC-S
△OAC=S
△ACD-S
△OAC=S
△AOM+S
△CON+S
矩形ONDM,
∴S=
+
+
=
(k+
)
2-
;
∴當(dāng)k>-
時(shí),S隨k的增大而增大,
由于k>0,故k沒有最小值,S也沒有最小值.
(2)AE=CF,理由如下:
連接MN,設(shè)AB與y軸的交點(diǎn)為P,BC與x軸的交點(diǎn)為Q;
則S
矩形APOM=S
矩形CQON=k,
∴DN•AD=DM•CD,即
,
又∵∠D=∠D,
∴△DNM∽△DCA,得∠DNM=∠DCA,
∴MN∥AC;
又∵AD∥y軸,故四邊形AFNM是平行四邊形,
同理四邊形CNME是平行四邊形,
∴CE=MN=AF,故AE=CF.
分析:(1)①由于四邊形ABCD是矩形,且AB∥x軸,可根據(jù)B的坐標(biāo),表示出A、C的坐標(biāo),將它們分別代入直線AC的解析式中,消去b后即可求得a的值;
②由于四邊形ABCD是矩形,且AC是矩形的對角線,則△ABC和△ACD的面積相等,因此△ABC、△AOC的面積差即為△ACD、△AOC的面積差,那么由△OAM、△OCN以及矩形OMDN的面積和即可求得S、k的函數(shù)關(guān)系式,根據(jù)自變量的取值范圍及函數(shù)的性質(zhì)即可判斷出S是否具有最小值.
(2)連接MN,設(shè)AB、BC與坐標(biāo)軸的交點(diǎn)分別為P、Q,易證得矩形APOM和矩形CQON的面積相等,那么DN•AD=DM•CD,將此式化為比例式,即可證得△DMN∽△DAC,根據(jù)相似三角形得到的等角,即可判定MN∥AC,由此可證得四邊形AFNM、四邊形CEMN都是平行四邊形,即可得到CE=AF=MN,由此可證得AE=CF.
點(diǎn)評:此題是反比例函數(shù)的綜合題,涉及到函數(shù)圖象交點(diǎn)坐標(biāo)的求法、圖形面積的求法、矩形的性質(zhì)、二次函數(shù)的應(yīng)用以及平行四邊形、相似三角形的判定和性質(zhì),綜合性強(qiáng),難度較大.