(2008•茂名)我市某工藝廠為配合北京奧運,設計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數(shù)關系,并求出函數(shù)關系式;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

【答案】分析:(1)描點,由圖可猜想y與x是一次函數(shù)關系,任選兩點求表達式,再驗證猜想的正確性;
(2)利潤=銷售總價-成本總價=單件利潤×銷售量.據(jù)此得表達式,運用性質(zhì)求最值;
(3)根據(jù)自變量的取值范圍結(jié)合函數(shù)圖象解答.
解答:解:(1)畫圖如圖;
由圖可猜想y與x是一次函數(shù)關系,
設這個一次函數(shù)為y=kx+b(k≠0)
∵這個一次函數(shù)的圖象經(jīng)過(30,500)
(40,400)這兩點,
解得
∴函數(shù)關系式是:y=-10x+800

(2)設工藝廠試銷該工藝品每天獲得的利潤是W元,依題意得
W=(x-20)(-10x+800)
=-10x2+1000x-16000
=-10(x-50)2+9000
∴當x=50時,W有最大值9000.
所以,當銷售單價定為50元∕件時,工藝廠試銷該工藝品每天獲得的利潤最大,最大利潤是9000元.

(3)對于函數(shù)W=-10(x-50)2+9000,當x≤45時,
W的值隨著x值的增大而增大,
∴銷售單價定為45元∕件時,工藝廠試銷該工藝品每天獲得的利潤最大.
點評:根據(jù)函數(shù)解析式求出的最值是理論值,與實際問題中的最值不一定相同,需考慮自變量的取值范圍.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年寧夏石嘴山市平羅縣寶豐中學中考數(shù)學模擬試卷(解析版) 題型:解答題

(2008•茂名)我市某工藝廠為配合北京奧運,設計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數(shù)關系,并求出函數(shù)關系式;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2008•茂名)我市某工藝廠為配合北京奧運,設計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數(shù)關系,并求出函數(shù)關系式;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2008•茂名)我市某工藝廠為配合北京奧運,設計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數(shù)關系,并求出函數(shù)關系式;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年廣東省茂名市中考數(shù)學試卷(解析版) 題型:解答題

(2008•茂名)我市某工藝廠為配合北京奧運,設計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數(shù)關系,并求出函數(shù)關系式;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

同步練習冊答案