已知如圖,某小區(qū)的中心廣場附近有一塊四邊形空地ABCD,計劃改建成個小花圃,經(jīng)測量,∠C=90°,AB=17m,BC=12m,CD=9m,AD=8m.求:
(1)對角線BD的長度;
(2)四邊形花圃ABCD的面積.
分析:(1)在直角三角形BCD中,根據(jù)勾股定理求出BD的長度,
(2)由(1)中BD的長度,再根據(jù)勾股定理的逆定理判斷出△BCD的形狀,再利用三角形的面積公式求解即可.
解答:解:(1)∵∠C=90°,BC=12m,CD=9m,
∴BD=
BC2 +CD2
=15;
(2)在△ABD中,
∵BD2+AD2=225+64=289=CD2,
∴△ABD是直角三角形,
∴S四邊形ABCD=
1
2
AD•BD+
1
2
BC•CD=
1
2
×8×15+
1
2
×12×9=114m2
答:四邊形花圃ABCD的面積是114m2
點評:本題考查的是勾股定理,勾股定理的逆定理及三角形的面積,能根據(jù)勾股定理的逆定理判斷出△ABD的形狀是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,某小區(qū)樓房附近有一個斜坡,小張發(fā)現(xiàn)樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長CD=6m,坡角到樓房的距離CB=8m.在D點處觀察點A的仰角為54°,已知坡角為30°,你能求出樓房AB的高度嗎?(tan54°≈1.38,結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,某小區(qū)樓房附近有一個斜坡,小張發(fā)現(xiàn)樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長CD=6m,坡角到樓房的距離CB=8m.在D點處觀察點A的仰角為54°,已知坡角為30°,你能求出樓房AB的高度嗎?(tan54°≈1.38,結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廣西自治區(qū)中考真題 題型:解答題

如圖,某小區(qū)樓房附近有一個斜坡,小張發(fā)現(xiàn)樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長CD=6m,坡角到樓房的距離CB=8m,在D點處觀察點A的仰角為54°,已知坡角為30°,你能求出樓房AB的高度嗎?(tan54°≈1.38,結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年貴州省貴陽市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

如圖,某小區(qū)樓房附近有一個斜坡,小張發(fā)現(xiàn)樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長CD=6m,坡角到樓房的距離CB=8m.在D點處觀察點A的仰角為54°,已知坡角為30°,你能求出樓房AB的高度嗎?(tan54°≈1.38,結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣西梧州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,某小區(qū)樓房附近有一個斜坡,小張發(fā)現(xiàn)樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長CD=6m,坡角到樓房的距離CB=8m.在D點處觀察點A的仰角為54°,已知坡角為30°,你能求出樓房AB的高度嗎?(tan54°≈1.38,結(jié)果精確到0.1m)

查看答案和解析>>

同步練習(xí)冊答案