如圖,已知△ABC的面積為3,且AB=AC,現(xiàn)將△ABC沿CA方向平移CA的長度得到△EFA.
(1)求△ABC所掃過的圖形面積;
(2)探究:AF與BE的位置關(guān)系,并說明理由.

解:(1)連接BF,
由題意得:△ABC≌△EFA,BA∥EF,且BA=EF
∴四邊形ABFE為平行四邊形,
∴S?ABFE=2S△EAF,
∴△ABC掃描面積為2×3=6;

(2)AF⊥BE.
證明:由(1)得四邊形BAEF是平行四邊形,
∵AB=AC,
∴AB=AE,
∴四邊形BAEF是菱形,
∴AF⊥BE.
分析:(1)△ABC所掃過的圖形面積由△ABC的面積和右邊四邊形ABFE的面積組成.由平移可得到∠BAC=∠FEA,AE=AC=AB=EF,那么四邊形BAEF是平行四邊形.平行四邊形被對角線分得的兩個三角形的面積相等.那么△AEF的面積是3,平行四邊形的面積是2△AEF的面積;
(2)再由鄰邊相等可得到四邊形ABFE是菱形,菱形的對角線互相垂直.
點評:平移前后對應(yīng)線段,對應(yīng)角相等.平行四邊形被對角線分得的兩個三角形的面積相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC的面積S△ABC=1.
在圖1中,若
AA1
AB
=
BB1
BC
=
CC1
CA
=
1
2
,則S△A1B1C1=
1
4
;
在圖2中,若
AA2
AB
=
BB2
BC
=
CC2
CA
=
1
3
,則S△A2B2C2=
1
3
;
在圖3中,若
AA3
AB
=
BB3
BC
=
CC3
CA
=
1
4
,則S△A3B3C3=
7
16
;
按此規(guī)律,若
AA8
AB
=
BB8
BC
=
CC8
CA
=
1
9
,S△A8B8C8=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC的面積為4,且AB=AC,現(xiàn)將△ABC沿CA方向平移CA的長度,得到△EFA.
(1)判斷AF與BE的位置關(guān)系,并說明理由;
(2)若∠BEC=15°,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•溫州二模)如圖,已知△ABC的面積是2平方厘米,△BCD的面積是3平方厘米,△CDE的面積是3平方厘米,△DEF的面積是4平方厘米,△EFG的面積是3平方厘米,△FGH的面積是5平方厘米,那么,△EFH的面積是
4
4
 平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•孝感模擬)如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(-2,2)、B(-5,0)、C(-1,0).
(1)請直接寫出點A關(guān)于y軸對稱的點的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°得到△A1B1C1,再將△A1B1C1以C1為位似中心,放大2倍得到△A2B2C1,請畫出△A1B1C1和△A2B2C1,并寫出一個點A2的坐標(biāo).(只畫一個△A2B2C1即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC的三個頂點的坐標(biāo)分別是A(-7,1),B(-3,3),C(-2,6).
(1)求作一個三角形,使它與△ABC關(guān)于y軸對稱;
(2)寫出(1)中所作的三角形的三個頂點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案