先作半徑為數(shù)學(xué)公式的圓的內(nèi)接正方形,接著作上述內(nèi)接正方形的內(nèi)切圓,再作上述內(nèi)切圓的內(nèi)接正方形,…,則按以上規(guī)律作出的第7個(gè)圓的內(nèi)接正方形的邊長為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:依次計(jì)算出第一個(gè),第二個(gè),第三個(gè)正方形的邊長,得到規(guī)律,即可求得.
解答:由于圓內(nèi)接正方形的邊長與圓的半徑的比為,內(nèi)接正方形的內(nèi)切圓的半徑與正方形的邊長的比為,
即這樣做一次后,圓的內(nèi)接正方形的邊長為×=1;
做第二次后的正方形的邊長為;
依此類推可得:第n個(gè)正方形的邊長是(n-1
則做第7次后的圓的內(nèi)接正方形的邊長為
故選A.
點(diǎn)評(píng):本題考查了圓正方形的邊長與圓的半徑的關(guān)系,找到規(guī)律是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:第24章《圓(下)》常考題集(14):24.4 圓的有關(guān)計(jì)算(解析版) 題型:選擇題

先作半徑為的圓的內(nèi)接正方形,接著作上述內(nèi)接正方形的內(nèi)切圓,再作上述內(nèi)切圓的內(nèi)接正方形,…,則按以上規(guī)律作出的第7個(gè)圓的內(nèi)接正方形的邊長為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年浙江省紹興市諸暨中學(xué)提前招生選拔考試數(shù)學(xué)試卷(解析版) 題型:選擇題

先作半徑為的圓的內(nèi)接正方形,接著作上述內(nèi)接正方形的內(nèi)切圓,再作上述內(nèi)切圓的內(nèi)接正方形,…,則按以上規(guī)律作出的第7個(gè)圓的內(nèi)接正方形的邊長為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年廣東省江門市臺(tái)山市高中提前招生數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

先作半徑為的圓的內(nèi)接正方形,接著作上述內(nèi)接正方形的內(nèi)切圓,再作上述內(nèi)切圓的內(nèi)接正方形,…,則按以上規(guī)律作出的第7個(gè)圓的內(nèi)接正方形的邊長為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(04)(解析版) 題型:選擇題

(2002•泉州)先作半徑為的圓的內(nèi)接正方形,接著作上述內(nèi)接正方形的內(nèi)切圓,再作上述內(nèi)切圓的內(nèi)接正方形,…,則按以上規(guī)律作出的第7個(gè)圓的內(nèi)接正方形的邊長為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學(xué)試卷(邱海燕)(解析版) 題型:選擇題

(2002•泉州)先作半徑為的圓的內(nèi)接正方形,接著作上述內(nèi)接正方形的內(nèi)切圓,再作上述內(nèi)切圓的內(nèi)接正方形,…,則按以上規(guī)律作出的第7個(gè)圓的內(nèi)接正方形的邊長為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案