(1998•大連)如圖,⊙O1與⊙O2內(nèi)切于點P.⊙O2的弦AB切⊙O1于點C,連接PA、PB,PC的延長線交⊙O2于點D.求證:(1)∠APC=∠BPC;
(2)PC2+AC•BC=PA•PB.
分析:①首先過點P作兩圓公切線MN,連接EC,AD,由弦切角定理,可得∠MPA=∠PCE=∠D,則可證得EC∥AD,可得∠ACE=∠CAD.由圓周角定理與弦切角定理,證得∠APC=∠BPC;
②易證得△PBC∽△PDA,由相似三角形的對應(yīng)邊成比例,可得PB•PA=PC•PD=PC(PC+CD)=PC2+PC•CD,又由相交弦定理,證得PC•PD=AC•BC,則可證得結(jié)論.
解答:證明:①過點P作兩圓公切線MN,連接EC,AD,
則∠MPA=∠PCE=∠D.
∴EC∥AD.
∴∠ACE=∠CAD.
∵AB是⊙O1的切線,
∴∠ACE=∠APC.
∵∠CAD=∠BPC,
∴∠APC=∠BPC.

②∵∠APC=∠BPC,∠B=∠D,
∴△PBC∽△PDA,
∴PB:PD=PC:PA,
∴PB•PA=PC•PD=PC(PC+CD)=PC2+PC•CD,
∵PC•PD=AC•BC,
∴PC2+AC•BC=PA•PB.
點評:此題考查了相切兩圓的性質(zhì)、弦切角定理、相交弦定理以及相似三角形的判定與性質(zhì).此題難度較大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1998•大連)如圖,PC切⊙O于點C,割線PAB交⊙O于點A、B,若PA=2,AB=4,則BC2:AC2的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•大連)如圖,AB是半圓O的直徑,AC是弦,D是弧AC的中點,若∠BAC=26°,則∠DCA的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•大連)如圖,AB是半圓O的直徑,點C、D是半圓O的三等分點,如果BC=3,那么圖中陰影部分的面積為
1
2
π
1
2
π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•大連)如圖,∠AOC=60°,點B在OA上且OB=2
3
,若以B為圓心,R為半徑的圓與直線OC相離,則R的取值范圍是
0<R<3
0<R<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設(shè)∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

同步練習(xí)冊答案