(2004•哈爾濱)中學(xué)生與小學(xué)生的視力狀況受到全社會(huì)的廣泛關(guān)注,某市部門對(duì)全市4萬(wàn)名初中生的視力狀況進(jìn)行一次抽樣調(diào)查統(tǒng)計(jì),所得到的有關(guān)數(shù)據(jù)繪制成頻數(shù)分布直方圖,如圖,從左到右五個(gè)小組的頻率之比依次是2:4:9:7:3,第五小組頻數(shù)是30.
(1)樣本容量是多少?
(2)中位數(shù)應(yīng)在哪一組?
(3)如果視力在4.9~5.1均屬于正常,那么全市初中生視力正常約有多少人?

【答案】分析:(1)樣本中,第五小組的頻率占到,且人數(shù)為30,據(jù)此可求出樣本容量;
(2)由(1)知,在250容量前提下,中位數(shù)應(yīng)該是第125、126個(gè)數(shù)據(jù)的平均數(shù),只需要找到這兩個(gè)數(shù)所在小組即可;
(3)用樣本來(lái)估計(jì)總體即可.
解答:解:(1)因?yàn)轭l率之比等于頻數(shù)之比,
設(shè)第一小組的頻數(shù)為2k,所以各組的頻數(shù)依次為2k、4k、9k、7k、3k,
于是3k=30,所以k=10.
所以2k=20,4k=40,9k=90,7k=70,所以20+40+90+70+30=250.
答:本次調(diào)查共抽測(cè)了250名學(xué)生;

(2)中位數(shù)應(yīng)在第三小組.
∵250個(gè)數(shù)據(jù)的中位數(shù)是第125和第126兩個(gè)數(shù)據(jù)的平均數(shù),
前兩個(gè)小組的頻數(shù)之和是20+40=60,60<125
第三小組的頻數(shù)是90,90+60=150,150>126,
∴中位數(shù)應(yīng)在第三小組;

(3)∵視力在4.9-5.1范圍內(nèi)的人有70人,
∴頻率==0.28,
∴全市初中生視力正常的約有40 000×0.28=11200(人),
答:全市初中生視力正常的約有11 200人.
點(diǎn)評(píng):主要考查了樣本的概念,中位數(shù)的確定方法和用樣本估計(jì)總體的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•哈爾濱)已知:拋物線y=-x2-(m+3)x+m2-12與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x1<0,x2>0,拋物線與y軸交于點(diǎn)C,OB=2OA.
(1)求拋物線的解析式;
(2)在x軸上,點(diǎn)A的左側(cè),求一點(diǎn)E,使△ECO與△CAO相似,并說(shuō)明直線EC經(jīng)過(guò)(1)中拋物線的頂點(diǎn)D;
(3)過(guò)(2)中的點(diǎn)E的直線y=x+b與(1)中的拋物線相交于M、N兩點(diǎn),分別過(guò)M、N作x軸的垂線,垂足為M′、N′,點(diǎn)P為線段MN上一點(diǎn),點(diǎn)P的橫坐標(biāo)為t,過(guò)點(diǎn)P作平行于y軸的直線交(1)中所求拋物線于點(diǎn)Q.是否存在t值,使S梯形MM'N'N:S△QMN=35:12?若存在,求出滿足條件的t值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2004•哈爾濱)小明同學(xué)騎自行車去郊外春游,下圖表示他離家的距離y(千米)與所用的時(shí)間x(小時(shí))之間關(guān)系的函數(shù)圖象.
(1)根據(jù)圖象回答:小明到達(dá)離家最遠(yuǎn)的地方需幾小時(shí)?此時(shí)離家多遠(yuǎn)?
(2)求小明出發(fā)兩個(gè)半小時(shí)離家多遠(yuǎn)?
(3)求小明出發(fā)多長(zhǎng)時(shí)間距家12千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•哈爾濱)已知:拋物線y=-x2-(m+3)x+m2-12與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x1<0,x2>0,拋物線與y軸交于點(diǎn)C,OB=2OA.
(1)求拋物線的解析式;
(2)在x軸上,點(diǎn)A的左側(cè),求一點(diǎn)E,使△ECO與△CAO相似,并說(shuō)明直線EC經(jīng)過(guò)(1)中拋物線的頂點(diǎn)D;
(3)過(guò)(2)中的點(diǎn)E的直線y=x+b與(1)中的拋物線相交于M、N兩點(diǎn),分別過(guò)M、N作x軸的垂線,垂足為M′、N′,點(diǎn)P為線段MN上一點(diǎn),點(diǎn)P的橫坐標(biāo)為t,過(guò)點(diǎn)P作平行于y軸的直線交(1)中所求拋物線于點(diǎn)Q.是否存在t值,使S梯形MM'N'N:S△QMN=35:12?若存在,求出滿足條件的t值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•哈爾濱)小明同學(xué)騎自行車去郊外春游,下圖表示他離家的距離y(千米)與所用的時(shí)間x(小時(shí))之間關(guān)系的函數(shù)圖象.
(1)根據(jù)圖象回答:小明到達(dá)離家最遠(yuǎn)的地方需幾小時(shí)?此時(shí)離家多遠(yuǎn)?
(2)求小明出發(fā)兩個(gè)半小時(shí)離家多遠(yuǎn)?
(3)求小明出發(fā)多長(zhǎng)時(shí)間距家12千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《數(shù)據(jù)分析》(03)(解析版) 題型:解答題

(2004•哈爾濱)中學(xué)生與小學(xué)生的視力狀況受到全社會(huì)的廣泛關(guān)注,某市部門對(duì)全市4萬(wàn)名初中生的視力狀況進(jìn)行一次抽樣調(diào)查統(tǒng)計(jì),所得到的有關(guān)數(shù)據(jù)繪制成頻數(shù)分布直方圖,如圖,從左到右五個(gè)小組的頻率之比依次是2:4:9:7:3,第五小組頻數(shù)是30.
(1)樣本容量是多少?
(2)中位數(shù)應(yīng)在哪一組?
(3)如果視力在4.9~5.1均屬于正常,那么全市初中生視力正常約有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案