閱讀:請仔細(xì)閱讀如圖圖形分割法,把一張5個小正方形拼成的紙片如圖1,分成三塊如圖2,在拼成一個正方形如圖3,應(yīng)用:現(xiàn)把2個邊長為a,b(a<b)的正方形拼成如圖4,請你仿照閱讀中的圖形分割法,將圖4分割成3塊,再拼成一個正方形(要求在圖4中分割,然后另畫出拼接圖)
分析:根據(jù)閱讀中的信息,在圖4的下面的邊上找一點,把線段分成與兩個正方形的邊長相等的兩條線段,再沿小正方形的左上角頂點與大正方形的右上角頂點剪開,得到兩個全等的三角形,然后把兩個三角形與剩下的部分進(jìn)行拼接即可得到一正方形.
解答:解:如圖1剪開,然后如圖2拼接即可.
點評:本題考查了圖形的剪拼,操作性較強,靈活性較大,在圖形的下邊找到把線段分成等于兩個正方形的邊長的兩條線段的點是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•房山區(qū)一模)閱讀下面材料:
如圖1,已知線段AB、CD相交于點O,且AB=CD,請你利用所學(xué)知識把線段AB、CD轉(zhuǎn)移到同一三角形中.
小強同學(xué)利用平移知識解決了此問題,具體做法:
如圖2,延長OD至點E,使DE=CO,延長OA至點F,使AF=OB,連接EF,則△OEF為所求的三角形.
請你仔細(xì)體會小強的做法,探究并解答下列問題:
如圖3,長為2的三條線段AA′,BB′,CC′交于一點O,并且∠B′OA=∠C′OB=∠A′OC=60°;
(1)請你把三條線段AA′,BB′,CC′轉(zhuǎn)移到同一三角形中.(簡要敘述畫法)
(2)連接AB′、BC′、CA′,如圖4,設(shè)△AB′O、△BC′O、△CA′O的面積分別為S1、S2、S3,則S1+S2+S3
3
(填“>”或“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀下列材料?:
問題:如圖1,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB=
3
,PC=1.求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.
李明同學(xué)的思路是:將△BPC繞點B順時針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2).連接PP′,可得△P′PB是等邊三角形(可證),而△PP′A又是直角三角形(由勾股定理的逆定理可證).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.進(jìn)而把AB放在Rt△APB(可證得)中,用勾股定理求出等邊△ABC的邊長為
7
.問題得到解決.?
[思路分析]首先仔細(xì)閱讀材料,問題中小明的做法總結(jié)起來就是通過旋轉(zhuǎn)固定的角度將已知條件放在同一個(組)圖形中進(jìn)行研究.旋轉(zhuǎn)60度以后BP就成了BP′,PC成了P′A,借助等量關(guān)系BP′=PP′,于是△APP′就可以計算了.
解決問題:
請你參考李明同學(xué)旋轉(zhuǎn)的思路,探究并解決下列問題:
如圖3,在正方形ABCD內(nèi)有一點P,且PA=
5
,BP=
2
,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

請閱讀下列材料:
問題:如圖1,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB=數(shù)學(xué)公式,PC=1.求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.
李明同學(xué)的思路是:將△BPC繞點B順時針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2).連接PP′,可得△P′PB是等邊三角形(可證),而△PP′A又是直角三角形(由勾股定理的逆定理可證).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.進(jìn)而把AB放在Rt△APB(可證得)中,用勾股定理求出等邊△ABC的邊長為數(shù)學(xué)公式.問題得到解決.?
[思路分析]首先仔細(xì)閱讀材料,問題中小明的做法總結(jié)起來就是通過旋轉(zhuǎn)固定的角度將已知條件放在同一個(組)圖形中進(jìn)行研究.旋轉(zhuǎn)60度以后BP就成了BP′,PC成了P′A,借助等量關(guān)系BP′=PP′,于是△APP′就可以計算了.
解決問題:
請你參考李明同學(xué)旋轉(zhuǎn)的思路,探究并解決下列問題:
如圖3,在正方形ABCD內(nèi)有一點P,且PA=數(shù)學(xué)公式,BP=數(shù)學(xué)公式,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年北京市房山區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

閱讀下面材料:
如圖1,已知線段AB、CD相交于點O,且AB=CD,請你利用所學(xué)知識把線段AB、CD轉(zhuǎn)移到同一三角形中.
小強同學(xué)利用平移知識解決了此問題,具體做法:
如圖2,延長OD至點E,使DE=CO,延長OA至點F,使AF=OB,連接EF,則△OEF為所求的三角形.
請你仔細(xì)體會小強的做法,探究并解答下列問題:
如圖3,長為2的三條線段AA′,BB′,CC′交于一點O,并且∠B′OA=∠C′OB=∠A′OC=60°;
(1)請你把三條線段AA′,BB′,CC′轉(zhuǎn)移到同一三角形中.(簡要敘述畫法)
(2)連接AB′、BC′、CA′,如圖4,設(shè)△AB′O、△BC′O、△CA′O的面積分別為S1、S2、S3,則S1+S2+S3______(填“>”或“<”或“=”).

查看答案和解析>>

同步練習(xí)冊答案