若M(,y1)、N(,y2)、P(,y3)三點都在函數(shù))的圖象上,則yl、y2、y3的大小關系是(     )

A.y2>y3>y1   B. y2>y1>y3   C.y3>y1>y2    D.y3>y2>y1

 

【答案】

C

【解析】解:∵k>0,∴函數(shù)圖象(如圖)在第一、三象限,在每個象限內(nèi),y隨x的增大而減小,而第一象限內(nèi)點對應的函數(shù)值一定大于第三象限內(nèi)的點對應的函數(shù)值.

,

故選C.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、如圖所示,反比例函數(shù)y1與正比例函數(shù)y2的圖象的一個交點坐標是A(2,1),若y2>y1>0,則x的取值范圍在數(shù)軸上表示為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知y1與x成正比例(比例系數(shù)為k1),y2與x成反比例(比例系數(shù)為k2),若函數(shù)y=y1+y2的圖象經(jīng)過點(1,2),(2,
12
),則8k1+5k2的值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x、y的方程組
x2-y+k=0(1)
(x-y)2-2x+2y+1=0(2)
有兩個不相同的實數(shù)解.
(1)求實數(shù)k的取值范圍;
(2)若
x=x1
y=y1
x=x2
y=y2
是方程組的兩個不相同的實數(shù)解,是否存在實數(shù)k,使得yly2-
x1
x2
-
x2
x1
的值等于2?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•寧波模擬)在平面直角坐標系xOy中,已知二次函數(shù)y1=ax2+3x+c的圖象經(jīng)過原點及點A(1,2),與x軸相交于另一點B.
(1)求:二次函數(shù)y1的解析式及B點坐標;
(2)若將拋物線y1以x=3為對稱軸向右翻折后,得到一個新的二次函數(shù)y2,已知二次函數(shù)y2與x軸交于兩點,其中右邊的交點為C點.點P在線段OC上,從O點出發(fā)向C點運動,過P點作x軸的垂線,交直線AO于D點,以PD為邊在PD的右側(cè)作正方形PDEF(當P點運動時,點D、點E、點F也隨之運動);
①當點E在二次函數(shù)y1的圖象上時,求OP的長.
②若點P從O點出發(fā)向C點做勻速運動,速度為每秒1個單位長度,同時線段OC上另一個點Q從C點出發(fā)向O點做勻速運動,速度為每秒2個單位長度(當Q點到達O點時停止運動,P點也同時停止運動).過Q點作x軸的垂線,與直線AC交于G點,以QG為邊在QG的左側(cè)作正方形QGMN(當Q點運動時,點G、點M、點N也隨之運動),若P點運動t秒時,兩個正方形分別有一條邊恰好落在同一條直線上(正方形在x軸上的邊除外),求此刻t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,對于任意兩點P1(x1,y1)與P2(x2,y2)的“非常距離”,給出如下定義:
若|x1-x2|≥|y1-y2|,則點P1與點P2的“非常距離”為|x1-x2|;
若|x1-x2|<|y1-y2|,則點P1與點P2的“非常距離”為|y1-y2|.
例如:點P1(1,2),點P1(3,5),因為|1-3|<|2-5|,所以點P1與點P2的“非常距離”為|2-5|=3,也就是圖1中線段P1Q與線段P2Q長度的較大值(點Q為垂直于y軸的直線P1Q與垂直于x軸的直線P2Q的交點).
(1)已知點A(-
1
2
,0
),B為y軸上的一個動點,①若點A與點B的“非常距離”為2,寫出滿足條件的點B的坐標;②直接寫出點A與點B的“非常距離”的最小值;
(2)如圖2,已知C是直線y=
3
4
x+3
上的一個動點,點D的坐標是(0,1),求點C與點D的“非常距離”最小時,相應的點C的坐標.

查看答案和解析>>

同步練習冊答案