【題目】如圖,點B、D、E在一條直線上,BE與AC相交于點F,且

⑴求證:△ABC∽△ADE;

⑵求證:∠BAD=∠CAE;

⑶若∠BAD=18°,求∠EBC的度數(shù).

【答案】(1)詳見解析;(2)詳見解析;(3)18°

【解析】

(1)根據(jù)相似三角形的判定定理證明;
(2)根據(jù)相似三角形的性質(zhì)定理得到∠BAC=∠DAE,結(jié)合圖形,證明即可;
(3)根據(jù)相似三角形的性質(zhì)定理證明.

解:(1)證明:∵,

∴△ABC~△ADE;
(2)∵△ABC~△ADE,
∴∠BAC=∠DAE,
∴∠BAC-∠DAF=∠DAE-∠DAF,
即∠BAD=∠CAE;
(3))∵△ABC~△ADE,
∴∠ABC=∠ADE,
∵∠ABC=∠ABE+∠EBC,∠ADE=∠ABE+∠BAD,
∴∠EBC=∠BAD=18°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ADBC,BE=CE,ABC=2C,BF為B的平分線.求證:AB=2DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰△ABC內(nèi)接于⊙O,AB=AC=4,BC=8,則⊙O的半徑為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線C1x軸的一個交點為A(-1,0),另一個交點為B,軸的交點為C(0,-3),其頂點為D.

(1)求拋物線C1的解析式;

(2)如圖1,將△OBC沿軸向右平移m個單位長度(0﹤)得到另一個三角形△EFG,將△EFG與△BCD重疊部分(四邊形BPGQ)的面積記為S,用含m的代數(shù)式表示S;

(3)如圖2,將拋物線C1平移,使其頂點為原點O,得到拋物線C2.若直線與拋物線C2交于S、T兩點,點是線段ST上一動點(不與S、T重合),試探究拋物線C2上是否存在一點R,R關(guān)于點N的中心對稱點K也在拋物線C2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,∠B的角平分線BEAD交于點E,BED的角平分線EFDC交于點F,若AB=9,DF=2FC,則BC=____.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結(jié)論有________(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸正半軸相交,其頂點坐標為,下列結(jié)論:;②;③;④方程有兩個相等的實數(shù)根,其中正確的結(jié)論是________.(只填序號即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,點從點出發(fā)沿方向以的速度向點勻速運動,同時點從點出發(fā)沿方向以的速度向點勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點,運動的時間是).過點于點,連接,

1)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的值;如果不能,請說明理由;

2)當為何值時,為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù).回答下列問題:

1)求出它的圖像與坐標軸的交點坐標;

2)當自變量滿足什么條件時?函數(shù)值?

3)當自變量時,則函數(shù)值的范圍?

4)在所給的直角坐標系中,畫出直線的圖像.

查看答案和解析>>

同步練習(xí)冊答案