【題目】如圖,在RtABC中,∠A=90°,OBC邊上一點,以O為圓心的半圓與AB邊相切于點D,與AC、BC邊分別交于點E、F、G,連接OD,已知BD=2,AE=3,tanBOD=

(1)求證:AE O的切線;

(2)求圖中兩部分陰影面積的和.

【答案】(1)見解析;(2)

【解析】

(1)由AB為圓O的切線,利用切線的性質(zhì)得到OD垂直于AB,在直角三角形BDO中,利用銳角三角函數(shù)定義,根據(jù)tanBODBD的值,求出OD的值;連接OE,由AE=OD=3,且ODAE平行,利用一組對邊平行且相等的四邊形為平行四邊形,根據(jù)平行四邊形的對邊平行得到OEAD平行,再由DAAE垂直得到OEAC垂直,即可得證;

(2)陰影部分的面積由三角形BOD的面積+三角形ECO的面積-扇形DOF的面積-扇形EOG的面積,求出即可.

(1)AB與圓O相切,

ODAB,

RtBDO中,BD=2,tanBOD=

OD=3;

連接OE.

AB與圓O相切,

ODAB.

∵在RtBDO中,BD=2,tanBOD=BDOD=23

OD=3.

∵∠A=90°,ODAB,

AEOD.

OD=AE=3,AEOD,

∴四邊形AEOD為平行四邊形,

ADEO.

DAAE,

OEAC.

又∵OE為圓的半徑,

AC為圓O的切線.

2)∵ODAC,

BD/BA=OD/CA,即=,

AC=7.5

EC=AC-AE=7.5-3=4.5,

S陰影=SBDO+SOEC-(S扇形FOD+S扇形EOG)

=×2×3+×3×4.5-=3+-=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yaxaya≠0)在同一直角坐標(biāo)系中的圖象可能是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABBC,點EAB上,DEC90°

1)求證:ADE∽△BEC

2)若AD1BC3,AE2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)如圖,小華站在河岸上的G點,看見河里有一小船沿垂直于岸邊的方向劃過來.此時,測得小船C的俯角是∠FDC=30°,若小華的眼睛與地面的距離是1.6米,BG=0.7米,BG平行于AC所在的直線,迎水坡i=43,坡長AB=8米,點A、BC、DF、G在同一平面內(nèi),則此時小船C到岸邊的距離CA的長為 米.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,P1P2是對角線BD的三等分點.求證:四邊形APlCP2是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,CD是弦,AB⊥CD,垂足為E,連結(jié)CO,AD,∠BAD=20°,則下列說法中正確的是( )

A. ∠BOC=2∠BAD B. CE=EO C. ∠OCE=40° D. AD=2OB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC=120°,OABC的外接圓,點P上的一個動點.

(1)求∠AOC的度數(shù);

(2)若⊙O的半徑為2,設(shè)點P到直線AC的距離為x,圖中陰影部分的面積為y,求yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.\

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校要從數(shù)學(xué)競賽初賽成績相同的四名學(xué)生(其中2名男生,2名女生)中,隨機(jī)選出2名學(xué)生去參加決賽,則選出的2名學(xué)生恰好為1名男生和1名女生的概率為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象經(jīng)過點,且與正比例函數(shù)的圖象交于點,點的橫坐標(biāo)是

1)求一次函數(shù)的函數(shù)解析式;

2)根據(jù)圖象,寫出當(dāng)時,自變量的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案