(1998•杭州)如圖所示,在△ABC中,∠A=90°,以A為圓心,AB為半徑的圓分別交BC、AC于其內(nèi)部的點(diǎn)D、E,若BD=10,DC=6,則AC2=   
【答案】分析:根據(jù)垂徑定理和射影定理求解.
解答:解:過點(diǎn)A作AE⊥BD于點(diǎn)E.
則BF=DF=BD=5.則CF=11,BC=16.
在△ABC中,∠A=90°,AF⊥BC,
因而△ACF∽△BCA,
=,因而AC2=BC•CF=176.
點(diǎn)評:本題主要考查了直角三角形斜邊上的高線分直角三角形得到的小三角形與原三角形相似,相似三角形的對應(yīng)邊的比相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1998年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:解答題

(1998•杭州)如圖所示的拋物線是的圖象經(jīng)平移而得到的,此時(shí)拋物線過點(diǎn)A(1,0)和x軸上點(diǎn)A右側(cè)的點(diǎn)B,頂點(diǎn)為P.
(1)當(dāng)∠APB=90°時(shí),求點(diǎn)P的坐標(biāo)及拋物線的解析式;
(2)求上述拋物線所對應(yīng)的二次函數(shù)在0<x≤7時(shí)的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年浙江省杭州市中考數(shù)學(xué)試卷 題型:解答題

(1998•杭州)如圖所示的拋物線是的圖象經(jīng)平移而得到的,此時(shí)拋物線過點(diǎn)A(1,0)和x軸上點(diǎn)A右側(cè)的點(diǎn)B,頂點(diǎn)為P.
(1)當(dāng)∠APB=90°時(shí),求點(diǎn)P的坐標(biāo)及拋物線的解析式;
(2)求上述拋物線所對應(yīng)的二次函數(shù)在0<x≤7時(shí)的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年全國中考數(shù)學(xué)試題匯編《圓》(03)(解析版) 題型:解答題

(1998•杭州)如圖,已知⊙O1,與⊙O2外切于點(diǎn)P,過⊙O1上的一點(diǎn)B作⊙O1的切線交⊙O2于點(diǎn)C、D,直線BP交⊙O2于點(diǎn)A,連接DP,DA,
(1)求證:△ABD∽△ADP;
(2)若AD=,BP=3,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年全國中考數(shù)學(xué)試題匯編《圓》(03)(解析版) 題型:解答題

(1998•杭州)如圖,PA、PB分別切⊙O于A、B,連接PO與⊙O相交于C,連接AC、BC,求證:AC=BC.

查看答案和解析>>

同步練習(xí)冊答案