【題目】如圖,拋物線與直線分別相交于兩點(diǎn),且此拋物線與軸的一個(gè)交點(diǎn)為,連接,.已知,

1)求拋物線的解析式;

2)在拋物線對稱軸上找一點(diǎn),使的值最大,并求出這個(gè)最大值;

3)點(diǎn)軸右側(cè)拋物線上一動(dòng)點(diǎn),連接,過點(diǎn)軸于點(diǎn),問:是否存在點(diǎn)使得以,,為頂點(diǎn)的三角形與相似?若存在,請求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.

【答案】1;(2)點(diǎn)M的坐標(biāo)為(,)時(shí),取最大值為;(3)存在點(diǎn)

【解析】

1)根據(jù)待定系數(shù)法求解即可;

2)根據(jù)三角形的三邊關(guān)系可知:當(dāng)點(diǎn)、、三點(diǎn)共線時(shí),可使的值最大,據(jù)此求解即可;

3)先求得,再過點(diǎn)于點(diǎn),過點(diǎn)軸于點(diǎn),如圖,這樣就把以,為頂點(diǎn)的三角形與相似問題轉(zhuǎn)化為以,,為頂點(diǎn)的三角形與相似的問題,再分當(dāng)時(shí)與時(shí)兩種情況,分別求解即可.

解:(1)將,代入得:

,解得:,

∴拋物線的解析式是

2)解方程組:,得,

,∴

當(dāng)點(diǎn)、、三點(diǎn)不共線時(shí),根據(jù)三角形三邊關(guān)系得,

當(dāng)點(diǎn)、三點(diǎn)共線時(shí),,

∴當(dāng)點(diǎn)、三點(diǎn)共線時(shí),取最大值,即為的長,

如圖,過點(diǎn)BEx軸于點(diǎn),則在中,由勾股定理得:,∴取最大值為;

易求得直線BC的解析式為:y=x3,拋物線的對稱軸是直線,當(dāng)時(shí),,∴點(diǎn)M的坐標(biāo)為(,);

∴點(diǎn)M的坐標(biāo)為()時(shí),取最大值為;

3)存在點(diǎn),使得以、為頂點(diǎn)的三角形與相似.

設(shè)點(diǎn)坐標(biāo)為,

中,∵,∴,

中,∵,∴

,,

過點(diǎn)于點(diǎn),過點(diǎn)軸于點(diǎn),如圖,

,,∴,

,

∴①當(dāng)時(shí),

,解得,(舍去)

∴點(diǎn)的縱坐標(biāo)為,∴點(diǎn);

②當(dāng)時(shí),,

,解得(舍去),(舍去),

∴此時(shí)無符合條件的點(diǎn)

綜上所述,存在點(diǎn)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】材料閱讀:

類比是數(shù)學(xué)中常用的數(shù)學(xué)思想.比如,我們可以類比多位數(shù)的加、減、乘、除的豎式運(yùn)算方法,得到多項(xiàng)式與多項(xiàng)式的加、減、乘、除的運(yùn)算方法.

理解應(yīng)用:

1)請仿照上面的豎式方法計(jì)算:;

2)已知兩個(gè)多項(xiàng)式的和為,其中一個(gè)多項(xiàng)式為.請用豎式的方法求出另一個(gè)多項(xiàng)式.

3)已知一個(gè)長為,寬為的矩形,將它的長增加8.寬增加得到一個(gè)新矩形,且矩形的周長是周長的3倍(如圖).同時(shí),矩形的面積和另一個(gè)一邊長為的矩形的面積相等,求的值和矩形的另一邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過點(diǎn)DDFAC,垂足為點(diǎn)F

1)求證:直線DF是⊙O的切線;

2)求證:BC24CFAC

3)若⊙O的半徑為4,∠CDF15°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“停課不停學(xué)”期間,小明用電腦在線上課,圖1是他的電腦液晶顯示器的側(cè)面圖,顯示屏AB可以繞O點(diǎn)旋轉(zhuǎn)一定角度.研究表明:當(dāng)眼睛E與顯示屏頂端A在同一水平線上,且望向顯示器屏幕形成一個(gè)18°俯角(即望向屏幕中心P的的視線EP與水平線EA的夾角∠AEP)時(shí),對保護(hù)眼睛比較好,而且顯示屏頂端A與底座C的連線AC與水平線CD垂直時(shí)(如圖2)時(shí),觀看屏幕最舒適,此時(shí)測得∠BCD30°,∠APE90°,液晶顯示屏的寬AB32cm

1)求眼睛E與顯示屏頂端A的水平距離AE;(結(jié)果精確到1cm

2)求顯示屏頂端A與底座C的距離AC.(結(jié)果精確到1cm)(參考數(shù)據(jù):sin18°0.3cos18°0.9,tan18°0.3,1.4,1.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;④拋物線與x軸的另一個(gè)交點(diǎn)是(﹣1,0);⑤當(dāng)1<x<4時(shí),有y2<y1

其中正確的是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距一列快車和一列慢車都從甲地駛往乙地,慢車先行駛1小時(shí)后,快車才開始行駛.已知快車的速度是以快車開始行駛計(jì)時(shí),設(shè)時(shí)間為 兩車之間的距離為,圖中的折線是的函數(shù)關(guān)系的部分圖象,根據(jù)圖象解決以下問題:

1)慢車的速度是_ _,點(diǎn)的坐標(biāo)是_ _;

2)線段所表示的之間的函數(shù)關(guān)系式是_ ;

3)試在圖中補(bǔ)全點(diǎn)以后的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知網(wǎng)格的小正方形的邊長均為1,格點(diǎn)三角形ABC如圖所示,請用沒有刻度的直尺畫出滿足條件的圖形

1)在甲圖中,畫出,且相似比為21,各頂點(diǎn)都在格點(diǎn)上.

2)在乙圖中,把線段AB三等分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》作為古代中國乃至東方的第一部自成體系的數(shù)學(xué)專著,與古希臘的《幾何原本》并稱現(xiàn)代數(shù)學(xué)的兩大源泉.在《九章算術(shù)》中記載有一問題今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”小輝同學(xué)根據(jù)原文題意,畫出圓材截面圖如圖所示,已知:鋸口深為 1寸,鋸道AB=1(1=10),則該圓材的直徑為(

A.13B.24C.26D.28

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC

1)求作直線EF使得EFAD于點(diǎn)E,交BC于點(diǎn)F且使得EAEC,FAFC(尺規(guī)作圖,保留作圖痕跡,不寫作法);

2)連接AFCE,判斷四邊形AFCE的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案