(本題滿分7分)如圖,在四邊形ABCD中,AB=BC,BF是∠ABC的平分線,AF∥DC,連接AC、CF,求證:CA是∠DCF的平分線。

證明:∵BF是∠ABC的平分線,∴,在△ABF與△CBF中,,∴△ABF≌△CBF,∴,∴,∵AF∥CD,∴,∴,∴CA平分∠DCF

解析試題分析:要證明CA平分∠DCF,只需證明。而因為,所以。要證明,只需證明。而因為△ABF≌△CBF,所以。要證明△ABF≌△CBF,只需找出全等三角形的判定依據(jù)。
考點(diǎn):全等三角形的判定,兩條平行線段的性質(zhì)
點(diǎn)評:本題通過全等三角形,推出對應(yīng)邊相等,從而推出兩條邊所對應(yīng)的角相等,而根據(jù)兩條線段平行,推出內(nèi)錯角相等,等量代換,可以得出

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

.(本題滿分5分)如圖一根木棒放在數(shù)軸上,木棒的左端與數(shù)軸上的點(diǎn)A重合,右端與點(diǎn)B重合.

 

 


 

 

1.若將木棒沿數(shù)軸向右水平移動,則當(dāng)它的左端移動到B點(diǎn)時,它的右端在數(shù)軸上所對應(yīng)的數(shù)為20;若將木棒沿數(shù)軸向左水平移動,則當(dāng)它的右端移動到A點(diǎn)時,則它的左端在數(shù)軸上所對應(yīng)的數(shù)為5(單位:cm),由此可得到木棒長為    cm.

2.由題(1)的啟發(fā),請你借助“數(shù)軸”這個工具幫助小紅解決下列問題:

問題:一天,小紅去問曾當(dāng)過數(shù)學(xué)老師現(xiàn)在退休在家的爺爺?shù)哪挲g,爺爺說:“我若是你現(xiàn)在這么大,你還要40年才出生;你若是我現(xiàn)在這么大,我已經(jīng)125歲,是老壽星了,哈哈!”,請求出爺爺現(xiàn)在多少歲了?

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分10分)如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),每個小方格的邊長為1個單位長度.在第一象限內(nèi)有橫、縱坐標(biāo)均為整數(shù)的A、B兩點(diǎn),且OA= OB=

(1)寫出A、B兩點(diǎn)的坐標(biāo);

(2)畫出線段AB繞點(diǎn)O旋轉(zhuǎn)一周所形成的圖形,并求其面積(結(jié)果保留π).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分6分)

如圖,在中,點(diǎn)的中點(diǎn),連接并延長,交的延長線于點(diǎn)F.

求證:

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分10分)
如圖,四邊形ABCD是長方形.

(1)作△ABC關(guān)于直線AC對稱的圖形;
(2)試判斷(1)中所作的圖形與△ACD重疊部分的三角形形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)
如圖,在平面直角坐標(biāo)系中,已知拋物線軸于兩點(diǎn),交軸于點(diǎn).

(1)求此拋物線的解析式;
(2)若此拋物線的對稱軸與直線交于點(diǎn)D,作⊙D與x軸相切,⊙D交軸于點(diǎn)E、F兩點(diǎn),求劣弧EF的長;
(3)P為此拋物線在第二象限圖像上的一點(diǎn),PG垂直于軸,垂足為點(diǎn)G,試確定P點(diǎn)的位置,使得△PGA的面積被直線AC分為1︰2兩部分.

查看答案和解析>>

同步練習(xí)冊答案