長(zhǎng)方體的棱長(zhǎng)分別為4、2和,則頂點(diǎn)與頂點(diǎn)之間最長(zhǎng)的距離是( )
A.4
B.5
C.6
D.17
【答案】分析:長(zhǎng)方體中最長(zhǎng)的線(xiàn)段為長(zhǎng)方形的對(duì)角線(xiàn),先根據(jù)勾股定理計(jì)算底面的對(duì)角線(xiàn)長(zhǎng),再根據(jù)勾股定理計(jì)算長(zhǎng)方體的對(duì)角線(xiàn).
解答:解:∵長(zhǎng)方體的棱長(zhǎng)分別為4、2和,
∴長(zhǎng)方體的對(duì)角線(xiàn)長(zhǎng)為=5,
故長(zhǎng)方體頂點(diǎn)與頂點(diǎn)之間最長(zhǎng)的距離是5.
故選B.
點(diǎn)評(píng):本題考查了勾股定理在直角三角形中的運(yùn)用,考查了長(zhǎng)方體對(duì)角線(xiàn)長(zhǎng)的計(jì)算,解本題的關(guān)鍵是讀懂題意,明白題目中隱藏的要求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

長(zhǎng)方體的棱長(zhǎng)分別為4、2和
5
,則頂點(diǎn)與頂點(diǎn)之間最長(zhǎng)的距離是( 。
A、4B、5C、6D、17

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖①,一個(gè)無(wú)蓋的長(zhǎng)方體盒子的棱長(zhǎng)分別為BC=3cm、AB=4cm、AA1=5cm,盒子的內(nèi)部頂點(diǎn)C1處有一只昆蟲(chóng)甲,在盒子的內(nèi)部頂點(diǎn)A處有一只昆蟲(chóng)乙(盒壁的厚度忽略不計(jì)).假設(shè)昆蟲(chóng)甲在頂點(diǎn)C1處?kù)o止不動(dòng),請(qǐng)計(jì)算A處的昆蟲(chóng)乙沿盒子內(nèi)壁爬行到昆蟲(chóng)甲C1處的最短路程.并畫(huà)出其最短路徑,簡(jiǎn)要說(shuō)明畫(huà)法.
(2)如果(1)問(wèn)中的長(zhǎng)方體的棱長(zhǎng)分別為AB=BC=6cm,AA1=14cm,如圖②,假設(shè)昆蟲(chóng)甲從盒內(nèi)頂點(diǎn)C1以1厘米/秒的速度在盒子的內(nèi)部沿棱C1C向下爬行,同時(shí)昆蟲(chóng)乙從盒內(nèi)頂點(diǎn)A以3厘米/秒的速度在盒壁的側(cè)面上爬行,那么昆蟲(chóng)乙至少需要多長(zhǎng)時(shí)間才能捕捉精英家教網(wǎng)到昆蟲(chóng)甲?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)如圖①,一個(gè)無(wú)蓋的長(zhǎng)方體盒子的棱長(zhǎng)分別為BC=3cm、AB=4cm、AA1=5cm,盒子的內(nèi)部頂點(diǎn)C1處有一只昆蟲(chóng)甲,在盒子的內(nèi)部頂點(diǎn)A處有一只昆蟲(chóng)乙(盒壁的厚度忽略不計(jì)).假設(shè)昆蟲(chóng)甲在頂點(diǎn)C1處?kù)o止不動(dòng),請(qǐng)計(jì)算A處的昆蟲(chóng)乙沿盒子內(nèi)壁爬行到昆蟲(chóng)甲C1處的最短路程.并畫(huà)出其最短路徑,簡(jiǎn)要說(shuō)明畫(huà)法.
(2)如果(1)問(wèn)中的長(zhǎng)方體的棱長(zhǎng)分別為AB=BC=6cm,AA1=14cm,如圖②,假設(shè)昆蟲(chóng)甲從盒內(nèi)頂點(diǎn)C1以1厘米/秒的速度在盒子的內(nèi)部沿棱C1C向下爬行,同時(shí)昆蟲(chóng)乙從盒內(nèi)頂點(diǎn)A以3厘米/秒的速度在盒壁的側(cè)面上爬行,那么昆蟲(chóng)乙至少需要多長(zhǎng)時(shí)間才能捕捉到昆蟲(chóng)甲?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年四川省德陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1)如圖①,一個(gè)無(wú)蓋的長(zhǎng)方體盒子的棱長(zhǎng)分別為BC=3cm、AB=4cm、AA1=5cm,盒子的內(nèi)部頂點(diǎn)C1處有一只昆蟲(chóng)甲,在盒子的內(nèi)部頂點(diǎn)A處有一只昆蟲(chóng)乙(盒壁的厚度忽略不計(jì)).假設(shè)昆蟲(chóng)甲在頂點(diǎn)C1處?kù)o止不動(dòng),請(qǐng)計(jì)算A處的昆蟲(chóng)乙沿盒子內(nèi)壁爬行到昆蟲(chóng)甲C1處的最短路程.并畫(huà)出其最短路徑,簡(jiǎn)要說(shuō)明畫(huà)法.
(2)如果(1)問(wèn)中的長(zhǎng)方體的棱長(zhǎng)分別為AB=BC=6cm,AA1=14cm,如圖②,假設(shè)昆蟲(chóng)甲從盒內(nèi)頂點(diǎn)C1以1厘米/秒的速度在盒子的內(nèi)部沿棱C1C向下爬行,同時(shí)昆蟲(chóng)乙從盒內(nèi)頂點(diǎn)A以3厘米/秒的速度在盒壁的側(cè)面上爬行,那么昆蟲(chóng)乙至少需要多長(zhǎng)時(shí)間才能捕捉到昆蟲(chóng)甲?

查看答案和解析>>

同步練習(xí)冊(cè)答案