【題目】解答下列各題
(1)解方程: = .
(2)先化簡,再求值: ,其中a2+3a﹣1=0.
【答案】
(1)解:方程兩邊都乘(2﹣x)(2+x),得x2=2﹣x﹣4+x2,
解得:x=﹣2,
檢驗:當(dāng)x=﹣2時,(2﹣x)(2+x)=0,
∴x=﹣2是增根,原方程無解
(2)解:原式= ÷
=
= ,
由a2+3a﹣1=0,得到a2+3a=a(a+3)=1,
則原式=
【解析】(1)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解;(2)原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結(jié)果,把已知等式變形后代入計算即可求出值.
【考點精析】掌握去分母法是解答本題的根本,需要知道先約后乘公分母,整式方程轉(zhuǎn)化出.特殊情況可換元,去掉分母是出路.求得解后要驗根,原留增舍別含糊.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,且∠EAF=∠CEF=45°.
(1)將△ADF繞著點A順時針旋轉(zhuǎn)90°,得到△ABG(如圖①),求證:△AEG≌△AEF;
(2)若直線EF與AB,AD的延長線分別交于點M,N(如圖②),求證:EF2=ME2+NF2;
(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段EF,BE,DF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計,今年五一小長假雙龍景區(qū)共接待游客48000多名,數(shù)48000用科學(xué)記數(shù)法表示的結(jié)果為( 。
A.48×103B.0.48×105C.4.8×104D.4.8×103
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O與坐標(biāo)原點重合,點C的坐標(biāo)為(0,3),點A在x軸的負(fù)半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點D和M,反比例函數(shù)的圖象經(jīng)過點D,與BC的交點為N.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)若點P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點E是AC的中點,AC=2AB,∠BAC的平分線AD交BC于點D,作AF∥BC,連接DE并延長交AF于點F,連接FC.求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+3與x軸交于點C,與直線AD交于點A(,),點D的坐標(biāo)為(0,1)
(1)求直線AD的解析式;
(2)直線AD與x軸交于點B,若點E是直線AD上一動點(不與點B重合),當(dāng)△BOD與△BCE相似時,求點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)衛(wèi)生防疫部門要求,游泳池必須定期換水,清洗.某游泳池周五早上8:00打開排水孔開始排水,排水孔的排水速度保持不變,期間因清洗游泳池需要暫停排水,游泳池的水在11:30全部排完.游泳池內(nèi)的水量Q(m2)和開始排水后的時間t(h)之間的函數(shù)圖象如圖所示,根據(jù)圖象解答下列問題:
(1)暫停排水需要多少時間?排水孔排水速度是多少?
(2)當(dāng)2≤t≤3.5時,求Q關(guān)于t的函數(shù)表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com