如圖,A,B,C三點(diǎn)在⊙O上,且AB是⊙O的直徑,半徑OD⊥AC,垂足為F,若∠A=30º,OF=3,則OA=     ,AC=       .
6, .

試題分析:先根據(jù)直角三角形的性質(zhì)求出OA的長(zhǎng),故可得出AB的長(zhǎng),再根據(jù)圓周角定理求出∠ACB的度數(shù),由直角三角形的性質(zhì)求出AB的長(zhǎng),在Rt△ABC中由勾股定理即可求出AC的長(zhǎng),∵OD⊥AC,∠A=30°,OF=3,
∴∠AFO=90°,∴OA=2OF=2×3=6,∴AB=2OA=2×6=12,∵AB是⊙O的直徑,∴∠ACB=90°,∴BC=AB=
×12=6,在Rt△ABC中,∵AB=12,BC=6,∴AC2=AB2?BC2=108, AC=.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙O1和⊙O2內(nèi)切,它們的半徑分別為3和1,過O1作⊙O2的切線,切點(diǎn)為A,則O1A的長(zhǎng)為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知⊙O1和⊙O2的半徑分別是2cm和3cm,若O1O2=4cm,則⊙O1和⊙O2的位置關(guān)系是(    )
A.外切B.內(nèi)含C.內(nèi)切D.相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

用一個(gè)圓心角90°,半徑為8㎝的扇形紙圍成一個(gè)圓錐,則該圓錐底面圓的半徑為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩圓半徑r1、r2分別是方程x2﹣7x+10=0的兩根,兩圓的圓心距為7,則兩圓的位置關(guān)系是(  )
A.相交B.內(nèi)切C.外切D.外離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知⊙O的兩條弦AC,BD相交于點(diǎn)E,∠A=70o,∠C=50o,那么sin∠AEB的值為__ __.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如左圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)O,AD平分∠CAB分別交OC于點(diǎn)E,交弧BC于點(diǎn)D,連結(jié)CD、OD,給出以下四個(gè)結(jié)論:①S△AEC=2S△DEO;②AC=2CD;③線段OD是DE與DA的比例中項(xiàng);④2CD²=CE·AB.其中正確結(jié)論的序號(hào)(    )

A. ①④             B. ①②④          C. ①③④           D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)幾何體由圓錐和圓柱組成,其尺寸如圖所示,則該幾何體的全面積(即表面積)為     (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,用一塊直徑為a的圓桌布平鋪在對(duì)角線長(zhǎng)為a的正方形桌面上,若四周下垂的最大長(zhǎng)度相等,則桌布下垂的最大長(zhǎng)度x為(  。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案