【題目】如圖1,在平面直角坐標(biāo)系中,點,,點在第三象限,已知,且.
(1)求點的坐標(biāo);
圖1
(2)如圖2,為線段上一動點(端點除外),是軸負(fù)半軸的一點,連接、,射線與的角平分線交于,若,求點的坐標(biāo);
圖2
(3)在第(2)問的基礎(chǔ)上,如圖3,點與點關(guān)于軸對稱,是射線上一個動點,連接,平分,平分,射線.試問的度數(shù)是否發(fā)生改變?若不變,請求其度數(shù):若改變,請指出其變化范圍.
圖3
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,點D、E、F分別在BC、AB、AC上,∠EDF=∠B.
(1)如圖1,求證:DECD=DFBE
(2)D為BC中點如圖2,連接EF.
①求證:ED平分∠BEF;
②若四邊形AEDF為菱形,求∠BAC的度數(shù)及 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次知識競賽中,甲、乙兩人進入了“必答題”環(huán)節(jié).規(guī)則是:兩人輪流答題,每人都要回答20個題,每個題回答正確得a分,回答錯誤或放棄回答扣b分.當(dāng)甲、乙兩人恰好都答完12個題時,甲答對了8個題,得分為64分;乙答對了9個題,得分為78分.
(1)求a和b的值;
(2)規(guī)定此環(huán)節(jié)得分不低于120分能晉級,甲在剩下的比賽中至少還要答對多少個題才能順利晉級?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,E是等邊三角形ABC的邊AB所在直線上一點,D是邊BC所在直線上一點,且D與C不重合,若EC=ED.則稱D為點C關(guān)于等邊三角形ABC的反稱點,點E稱為反稱中心.
在平面直角坐標(biāo)系xOy中,
(1)已知等邊三角形AOC的頂點C的坐標(biāo)為(2,0),點A在第一象限內(nèi),反稱中心E在直線AO上,反稱點D在直線OC上.
①如圖2,若E為邊AO的中點,在圖中作出點C關(guān)于等邊三角形AOC的反稱點D,并直接寫出點D的坐標(biāo): ;
②若AE=2,求點C關(guān)于等邊三角形AOC的反稱點D的坐標(biāo);
(2)若等邊三角形ABC的頂點為B(n,0),C(n+1,0),反稱中心E在直線AB上,反稱點D在直線BC上,且2≤AE<3.請直接寫出點C關(guān)于等邊三角形ABC的反稱點D的橫坐標(biāo)t的取值范圍: (用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作BE的平行線與線段ED的延長線交于點F,連接AE,CF.
(1)求證:AF=CE;
(2)若AC=EF,試判斷四邊形AFCE是什么樣的四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角△ABC中,D,E分別是AB,AC邊上的點,△ADC≌△ADC',△AEB≌△AEB',且C'D∥EB'∥BC,記BE,CD交于點F,若∠BAC=x°,則∠BFC的大小是_____°.(用含x的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形一條邊的邊長為3,它的另兩條邊的邊長是關(guān)于x的一元二次方程x2﹣12x+k=0的兩個根,則k的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】聯(lián)想與探索:
如圖1,將線段A1A2本向右平移1個單位長度至B1B2,得到封閉圖形A1A2B2B1(即陰影部分),在圖2中,將折線A1A2A3向右平移1個單位長度至B1B2B3,得到封閉圖形A1A2A3B3B2B1(即陰影部分).
(1)在圖3中,請你類似地畫一條有兩個折點的折線,同樣向右平移1個單位長度,從而得到一個封閉圖形,并用陰影表示;
(2)請你分別寫出上述三個圖形中除去陰影部分后剩余部分的面積(設(shè)長方形水平方向長均為a,豎直方向長均為b) :S1= ,S2= ,S3= ;
(3)如圖4,在一塊長方形草地上,有一條彎曲的小路(小路任何地方的水平寬度都是2個單位長度,長方形水平方向長為a,豎直方向長為b),則空白部分表示的草地面積是多少?
(4)如圖5,若在(3)中的草地上又有一條橫向的曲小路(小路任何地方的寬度都是1個單位長度),則空白部分表示的草地面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當(dāng)點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com