如圖,已知⊙O的半徑為2,以⊙O的弦AB為直徑作⊙M,點C是⊙O優(yōu)弧上的一個動點(不與點A、點B重合).連接AC、BC,分別與⊙M相交于點D、點E,連接DE.若AB=2
(1)求∠C的度數(shù);
(2)求DE的長;
(3)如果記tan∠ABC=y,=x(0<x<3),那么在點C的運動過程中,試用含x的代數(shù)式表示y.

【答案】分析:(1)根據(jù)一條弧所對的圓周角等于它所對的圓心角的一半,連OM,OB,可求出∠BOM的度數(shù),∠C=∠BOM.
(2)根據(jù)圓內(nèi)接四邊形一外角等于它的內(nèi)對角,可證明△CDE∽△CBA,兩三角形相似對應(yīng)線段成比例,同時運用(1)中∠C=60°可得的值,能計算出DE的長.
(3)根據(jù)直徑所對的圓周角是直角,連接AE,在直角三角形中用三角函數(shù)可求出y與x之間的關(guān)系.
解答:解:(1)如圖:連接OB、OM.
則在Rt△OMB中,∵OB=2,MB=,∴OM=1.
∵OM=,∴∠OBM=30°.
∴∠MOB=60°.
連接OA.則∠AOB=120°.
∴∠C=∠AOB=60°.

(2)∵四邊形ABED內(nèi)接于⊙M,
∴∠CBA+∠ADE=180°,
∵∠CDE+∠ADE=180°,
∴∠CDE=∠CBA,
在△CDE和△CBA中,
∵∠CDE=∠CBA,∠ECD=∠ACB,
∴△CDE∽△CBA,∴
連接BD,則∠BDC=∠ADB=90°.
在Rt△BCD中,∵∠BCD=60°,∴∠CBD=30°.∴BC=2DC.
.即
∴DE==×2=

(3)連接AE.
∵AB是⊙M的直徑,∴∠AEB=∠AEC=90°.
,可得AD=x•DC,AC=AD+DC=(x+1)•DC.
在Rt△ACE中,∵cos∠ACE=,sin∠ACE=,
∴CE=AC•cos∠ACE=(x+1)•DC•cos60°=;
AE=AC•sin∠ACE=(x+1)•DC•sin60°=
又由(2),知BC=2DC.
∴BE=BC-CE=
在Rt△ABE中,tan∠ABC=
(0<x<3).
點評:本題考查圓周角與圓心角之間的關(guān)系,園中相似三角形的運用,以及由直徑所對的圓周角是直角可得直角三角形,在直角三角形中對三角函數(shù)的靈活運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O的半徑為6cm,射線PM經(jīng)過點O,OP=10cm,射線PN與⊙O相切于點Q.A,B兩點同時從點精英家教網(wǎng)P出發(fā),點A以5cm/s的速度沿射線PM方向運動,點B以4cm/s的速度沿射線PN方向運動.設(shè)運動時間為ts.
(1)求PQ的長;
(2)當t為何值時,直線AB與⊙O相切?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為1,銳角△ABC內(nèi)接于⊙O,作BD⊥AC于點D,OM⊥AB于點M.sin∠CBD=
13
.則OM=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,銳角△ABC內(nèi)接于⊙O,弦AB=8,BD⊥AC于點D,OM⊥AB于點M,則sin∠CBD的值等于( 。
A、0.6B、0.8C、0.5D、1.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•新疆)如圖,已知⊙O的半徑為4,CD是⊙O的直徑,AC為⊙O的弦,B為CD延長線上的一點,∠ABC=30°,且AB=AC.
(1)求證:AB為⊙O的切線;
(2)求弦AC的長;
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,兩弦AB、CD相交于AB中點E,且AB=8,CE:ED=4:9,則圓心到弦CD的距離為(  )
A、
2
14
3
B、
28
9
C、
2
7
3
D、
80
9

查看答案和解析>>

同步練習冊答案