作業(yè)寶已知:如圖,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)E在邊BC的延長(zhǎng)線上,DA⊥AE,AD=AE.
(1)求證:△ABE≌△ACD;
(2)如果點(diǎn)F是DE的中點(diǎn),求證:CF=DF.

(1)證明:∵DA⊥AE,
∴∠DAE=90°,
∵∠BAC=90°,
∴∠BAC+∠CAE=∠DAE+∠CAE,
在△ABE和△ACD中,
,
∴△ABE≌△ACD;

(2)證明:∵△ABE≌△ACD,
∴∠B=∠ACD,
∵∠B=∠ACB,∠B+∠ACB=90°,
∴∠ACD+∠ACB=90°,
∴∠DCE=90°,
∵點(diǎn)F是DE的中點(diǎn),
∴CF=DE=DF;
分析:(1)根據(jù)DA⊥AE,得出∠DAE=90°,再根據(jù)∠BAC=90°,得出∠BAC+∠CAE=∠DAE+∠CAE,即可證出△ABE≌△ACD;
(2)根據(jù)△ABE≌△ACD,得出∠B=∠ACD,再根據(jù)∠B=∠ACB,∠B+∠ACB=90°,得出∠DCE=90°,最后根據(jù)點(diǎn)F是DE的中點(diǎn),得出CF=DF.
點(diǎn)評(píng):此題考查了全等三角形的判定與性質(zhì),用到的知識(shí)點(diǎn)是全等三角形的判定與性質(zhì),直角三角形的性質(zhì),解題的關(guān)鍵是證出∠BAE=∠CAD.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過(guò)A,D兩點(diǎn)作⊙O(不寫(xiě)作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:專(zhuān)項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊(cè)答案