如圖,Rt△ABC中,∠BAC=90°,BC所在直線的解析式為數(shù)學(xué)公式,AC=3,若AB的中點(diǎn)D在雙曲線數(shù)學(xué)公式上,求a的值。

解:由BC的解析式可得點(diǎn)C為(5,0),又∵AC=3,
∴可得A(2,0),因?yàn)锳B垂直于x軸,可得B的橫坐標(biāo)為2.
而B在直線上,所以可得B點(diǎn)坐標(biāo)為(2,4).
由A和B的坐標(biāo)可得出D點(diǎn)坐標(biāo)(2,2).
將D點(diǎn)坐標(biāo)代入y=可求出:a=4.
分析:根據(jù)BC的解析式,AC=3,可得點(diǎn)C點(diǎn)坐標(biāo)、A點(diǎn)坐標(biāo)和B的橫坐標(biāo),而B在直線上,所以可得B點(diǎn)坐標(biāo),由A和B的坐標(biāo)可得出D點(diǎn)坐標(biāo),將D點(diǎn)坐標(biāo)代入雙曲線可求出a值.
點(diǎn)評(píng):本題考查了待定系數(shù)法求反比例函數(shù)解析式關(guān)鍵在于A點(diǎn)和B點(diǎn)坐標(biāo)的求解及求出坐標(biāo)后的運(yùn)用,這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個(gè)三角形,且要求其中一個(gè)三角形是等腰三角形.(保留作圖痕跡,不要求寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點(diǎn)邊上一點(diǎn),DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(zhǎng)(2)求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點(diǎn)D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長(zhǎng)為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案