解方程:
(1)解方程:4x-3(5-x)=13
(2)解方程:x-
x-2
5
=
2x-5
3
-3
分析:(1)先去括號,再移項(xiàng),化系數(shù)為1,從而得到方程的解.
(2)這是一個(gè)帶分母的方程,所以要先去分母,再去括號,最后移項(xiàng),化系數(shù)為1,從而得到方程的解.
解答:解:(1)去括號得:4x-15+3x=13,
移項(xiàng)合并得:7x=28,
系數(shù)化為1得:得x=4;
(2)原式變形為x+3=
2x-5
3
+
x-2
5
,
去分母得:5(2x-5)+3(x-2)=15(x+3),
去括號得10x-25+3x-6=15x+45,
移項(xiàng)合并得-2x=76,
系數(shù)化為1得:x=-38.
點(diǎn)評:本題考查解一元一次方程,解一元一次方程的一般步驟是:去分母、去括號、移項(xiàng)、合并同類項(xiàng)、化系數(shù)為1.注意移項(xiàng)要變號.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)用配方法解方程:x2+4x-12=0;
(2)用公式法解方程:3x2+5(2x+1)=0;
(3)用因式分解法解方程:(x-1)2-2x(x-1)=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年山東臨沭第三初級中學(xué)九年級10月月考數(shù)學(xué)試卷(帶解析) 題型:解答題

閱讀下面例題的解答過程,體會并其方法,并借鑒例題的解法解方程。
例:解方程x2-1=0.
解:(1)當(dāng)x-1≥0即x≥1時(shí),= x-1。
原化為方程x2-(x-1)-1=0,即x2-x=0
解得x1 =0.x2=1
∵x≥1,故x =0舍去,
∴x=1是原方程的解。
(2)當(dāng)x-1<0即x<1時(shí),=-(x-1)。
原化為方程x2+(x-1)-1=0,即x2+x-2=0
解得x1 =1.x2=-2
∵x<1,故x =1舍去,
∴x=-2是原方程的解。
綜上所述,原方程的解為x1 =1.x2=-2
解方程x2-4=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年山東臨沭第三初級中學(xué)九年級10月月考數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面例題的解答過程,體會并其方法,并借鑒例題的解法解方程。

例:解方程x2-1=0.

解:(1)當(dāng)x-1≥0即x≥1時(shí),= x-1。

原化為方程x2-(x-1)-1=0,即x2-x=0

解得x1 =0.x2=1

∵x≥1,故x =0舍去,

∴x=1是原方程的解。

(2)當(dāng)x-1<0即x<1時(shí),=-(x-1)。

原化為方程x2+(x-1)-1=0,即x2+x-2=0

解得x1 =1.x2=-2

∵x<1,故x =1舍去,

∴x=-2是原方程的解。

綜上所述,原方程的解為x1 =1.x2=-2

解方程x2-4=0.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

關(guān)于x的方程:x+數(shù)學(xué)公式=c+數(shù)學(xué)公式的解是x1=c,x2=數(shù)學(xué)公式;
x-數(shù)學(xué)公式=c-數(shù)學(xué)公式(即x+數(shù)學(xué)公式=c+數(shù)學(xué)公式)的解是x1=c,x2=-數(shù)學(xué)公式;

x+數(shù)學(xué)公式=c+數(shù)學(xué)公式的解是:x1=c,x2=數(shù)學(xué)公式,…
(1)觀察上述方程及其解的特征,直接寫出關(guān)于x的方程x+數(shù)學(xué)公式=c+數(shù)學(xué)公式(m≠0)的解,并利用“方程的解”的概念進(jìn)行驗(yàn)證;
(2)通過(1)的驗(yàn)證所獲得的結(jié)論,你能解出關(guān)于x的方程:x+數(shù)學(xué)公式=a+數(shù)學(xué)公式的解嗎?若能,請求出此方程的解;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市通州區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•通州區(qū)二模)閱讀理解題:閱讀下列材料,關(guān)于x的方程:x+=c+的解是x1=c,x2=
x-=c-(即x+=c+)的解是x1=c,x2=-;x+=c+的解是:x1=c,x2=,…
(1)觀察上述方程及其解的特征,直接寫出關(guān)于x的方程x+=c+(m≠0)的解,并利用“方程的解”的概念進(jìn)行驗(yàn)證;
(2)通過(1)的驗(yàn)證所獲得的結(jié)論,你能解出關(guān)于x的方程:x+=a+的解嗎?若能,請求出此方程的解;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案