精英家教網(wǎng)如圖,已知△ABC內(nèi)接于⊙O,AD平分∠BAC,交⊙O于點D,過D作⊙O的切線與AC的延長線交于點E.
(1)求證:BC∥DE;
(2)若AB=3,BD=2,求CE的長;
(3)在題設(shè)條件下,為使BDEC是平行四邊形,△ABC應(yīng)滿足怎樣的條件(不要求證明).
分析:(1)連接CD,可根據(jù)圓周角定理通過AD平分∠BAC得出∠DCB=∠DBC,根據(jù)弦切角定理可得出∠CDE=∠DBC,將等角置換后即可得出∠BCD=∠CDE.即可得出平行;
(2)由(1)不難得出BD=CD(等角對等邊),然后通過證明三角形ABD和CDE相似,來得出AB、BC、CD、CE的比例關(guān)系,有了AB、BD、CD的值就求出了CE的長;
(3)要使BDEC是平行四邊形,那么BD∥CE,可通過弦切角定理得出∠BAD=∠ACB,也就得出了
AB
=
BD
,上面(1)中已經(jīng)得出
BD
=
CD
,因此
CD
=
CD
=
AB
,∠ACB=∠BAD=∠CAD,因此∠BAC=2∠ACB.
解答:精英家教網(wǎng)(1)證明:連接CD;
∵DE是圓O的切線,
∴∠CDE=∠CBD.
∵∠CBD=∠DAC,
∴∠CDE=∠DAC.
∵AD平分∠BAC,
∴∠BAD=∠CAD.
∴∠CDE=∠BAD.
∵∠BAD=∠BCD,
∴∠CDE=∠BCD.
∴BC∥DE.

(2)解:如圖,連接CD;
∵AD平分∠BAC,
BD
=
CD

∴∠BCD=∠CBD.
∴BD=CD=2.
∵BC∥DE,
∴∠E=∠ACB=∠ADB.
又由(1)中已證得∠CDE=∠BAD,
∴△ABD∽△DCE.
∴AB:BD=CD:CE.
∴CE=BD•CD÷AB=
4
3


(3)解:應(yīng)該是∠BAC=2∠ACB.
點評:本題主要考查了切線的性質(zhì),相似三角形的判定和應(yīng)用等知識點,有一定的綜合性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC內(nèi)接于⊙O,∠C=45°,AB=4,則⊙O的半徑為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•樊城區(qū)模擬)如圖,已知△ABC內(nèi)接于⊙O,弦AD交BC于E,過點D的切線MN交直線AB于M,交直線AC于N.
(1)求證:AE•DE=BE•CE;
(2)連接DB,CD,若MN∥BC,試探究BD與CD的數(shù)量關(guān)系;
(3)在(2)的條件下,已知AB=6,AN=15,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC內(nèi)接于⊙O,AE平分∠BAC,且AD⊥BC于點D,連接OA.
求證:∠OAE=∠EAD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC內(nèi)接于⊙O,AB=AC,∠A=36°,CD是⊙O的直徑,求∠ACD的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案